S-Eval_v0.1.1 / src /utils_display.py
Yuanxh's picture
update README.md
71e3f1c
# from dataclasses import dataclass
# These classes are for user facing column names, to avoid having to change them
# all around the code when a modif is needed
# @dataclass
# class ColumnContent:
# name: str
# type: str
# displayed_by_default: bool
# hidden: bool = False
# never_hidden: bool = False
# dummy: bool = False
# def fields(raw_class):
# return [
# v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
# ]
# @dataclass(frozen=True)
# class AutoEvalColumn: # Auto evals column
# model_type_symbol = ColumnContent("T", "str", True)
# model = ColumnContent("Model", "markdown", True, never_hidden=True)
# average = ColumnContent("Average ⬆️", "number", True)
# arc = ColumnContent("ARC", "number", True)
# hellaswag = ColumnContent("HellaSwag", "number", True)
# mmlu = ColumnContent("MMLU", "number", True)
# truthfulqa = ColumnContent("TruthfulQA", "number", True)
# model_type = ColumnContent("Type", "str", False)
# precision = ColumnContent("Precision", "str", False, True)
# license = ColumnContent("Hub License", "str", False)
# params = ColumnContent("#Params (B)", "number", False)
# likes = ColumnContent("Hub ❤️", "number", False)
# revision = ColumnContent("Model sha", "str", False, False)
# dummy = ColumnContent(
# "model_name_for_query", "str", True
# ) # dummy col to implement search bar (hidden by custom CSS)
# @dataclass(frozen=True)
# class EloEvalColumn: # Elo evals column
# model = ColumnContent("Model", "markdown", True)
# gpt4 = ColumnContent("GPT-4 (all)", "number", True)
# human_all = ColumnContent("Human (all)", "number", True)
# human_instruct = ColumnContent("Human (instruct)", "number", True)
# human_code_instruct = ColumnContent("Human (code-instruct)", "number", True)
# @dataclass(frozen=True)
# class EvalQueueColumn: # Queue column
# model = ColumnContent("model", "markdown", True)
# revision = ColumnContent("revision", "str", True)
# private = ColumnContent("private", "bool", True)
# precision = ColumnContent("precision", "bool", True)
# weight_type = ColumnContent("weight_type", "str", "Original")
# status = ColumnContent("status", "str", True)
# LLAMAS = [
# "huggingface/llama-7b",
# "huggingface/llama-13b",
# "huggingface/llama-30b",
# "huggingface/llama-65b",
# ]
# KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
# VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
# OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
# DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
# MODEL_PAGE = "https://huggingface.co/models"
# LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
# VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
# ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
# def model_hyperlink(link, model_name):
# return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
# def make_clickable_model(model_name):
# link = f"https://huggingface.co/{model_name}"
# if model_name in LLAMAS:
# link = LLAMA_LINK
# model_name = model_name.split("/")[1]
# elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
# link = VICUNA_LINK
# model_name = "stable-vicuna-13b"
# elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
# link = ALPACA_LINK
# model_name = "alpaca-13b"
# if model_name == "dolly-12b":
# link = DOLLY_LINK
# elif model_name == "vicuna-13b":
# link = VICUNA_LINK
# elif model_name == "koala-13b":
# link = KOALA_LINK
# elif model_name == "oasst-12b":
# link = OASST_LINK
# else:
# link = MODEL_PAGE
# return model_hyperlink(link, model_name)
# def styled_error(error):
# return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
# def styled_warning(warn):
# return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
# def styled_message(message):
# return (
# f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
# )
Qwen_1_8B_Chat_Link = "https://huggingface.co/Qwen/Qwen-1_8B-Chat"
Qwen_7B_Chat_Link = "https://huggingface.co/Qwen/Qwen-7B-Chat"
Qwen_14B_Chat_Link = "https://huggingface.co/Qwen/Qwen-14B-Chat"
Qwen_72B_Chat_Link = "https://huggingface.co/Qwen/Qwen-72B-Chat"
Gemma_2B_it_Link = "https://huggingface.co/google/gemma-2b-it"
Gemma_7B_it__Link = "https://huggingface.co/google/gemma-7b-it"
ChatGLM3_6B_Link = "https://huggingface.co/THUDM/chatglm3-6b"
Mistral_7B_Instruct_v0_2_Link = "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2"
LLaMA_2_7B_Chat_Link = "https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
LLaMA_2_13B_Chat_Link = "https://huggingface.co/meta-llama/Llama-2-13b-chat-hf"
LLaMA_2_70B_Chat_Link = "https://huggingface.co/meta-llama/Llama-2-70b-chat-hf"
LLaMA_3_8B_Instruct_Link = "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"
LLaMA_3_70B_Instruct_Link = "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct"
Vicuna_7B_v1_3_Link = "https://huggingface.co/lmsys/vicuna-7b-v1.3"
Vicuna_13B_v1_3_Link = "https://huggingface.co/lmsys/vicuna-13b-v1.3"
Vicuna_33B_v1_3_Link = "https://huggingface.co/lmsys/vicuna-33b-v1.3"
Baichuan2_13B_Chat_Link = "https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat"
Yi_34B_Chat_Link = "https://huggingface.co/01-ai/Yi-34B-Chat"
GPT_4_Turbo_Link = "https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4"
ErnieBot_4_0_Link = "https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t"
Gemini_1_0_Pro_Link = "https://ai.google.dev/gemini-api/docs/models/gemini"