emilylearning commited on
Commit
fdbad51
·
1 Parent(s): c9babee

Added adult example. Tighten up presentation.

Browse files
Files changed (1) hide show
  1. app.py +16 -16
app.py CHANGED
@@ -8,7 +8,7 @@ from matplotlib.ticker import MaxNLocator
8
  from transformers import pipeline
9
 
10
  MODEL_NAMES = ["bert-base-uncased", "roberta-base", "bert-large-uncased", "roberta-large"]
11
- OWN_MODEL_NAME = 'add-your-own'
12
 
13
  DECIMAL_PLACES = 1
14
  EPS = 1e-5 # to avoid /0 errors
@@ -308,7 +308,7 @@ place_example = [
308
  'PLACE',
309
  "False",
310
  1,
311
- 'She was a child in PLACE.'
312
  ]
313
 
314
 
@@ -353,13 +353,13 @@ def your_fn():
353
  demo = gr.Blocks()
354
  with demo:
355
  gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
356
- gr.Markdown("Find learned statistical dependencies between otherwise unconditionally independent variables (for example between `gender` and `time`) due to dataset selection bias, with almost any BERT-like LLM on Hugging Face, below.")
357
 
358
- gr.Markdown("See why this happens how in our paper, [Selection Bias Induced Spurious Correlations in Large Language Models](https://arxiv.org/pdf/2207.08982.pdf), presented at [ ICML 2022 Workshop on Spurious Correlations, Invariance, and Stability](https://sites.google.com/view/scis-workshop/home).")
359
 
360
 
361
  gr.Markdown("## Instructions for this Demo")
362
- gr.Markdown("1) Click on one of the examples below (where we sweep through a spectrum of `places`, `date` and `subreddit` interest) to pre-populate the input fields.")
363
  gr.Markdown("2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!")
364
  gr.Markdown("3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!")
365
 
@@ -377,17 +377,17 @@ with demo:
377
  gr.Markdown(
378
  "<-- x-axis sorted in order of increasing self-identified female participation (see [bburky](http://bburky.com/subredditgenderratios/)): ")
379
 
380
- your_gen = gr.Button('Click for your model example inputs')
381
  gr.Markdown("<-- x-axis dates, with your own model loaded! (If first time, try another example, it can take a while to load new model.)")
382
 
383
  gr.Markdown("## Input fields")
384
  gr.Markdown(
385
- f"A) Pick a spectrum of comma separated values for text injection and x-axis, described above in the Dose-response Relationship section.")
386
 
387
  with gr.Row():
388
  x_axis = gr.Textbox(
389
- lines=5,
390
- label="A) Pick a spectrum of comma separated values for text injection and x-axis",
391
  )
392
 
393
 
@@ -398,15 +398,15 @@ with demo:
398
  model_name = gr.Radio(
399
  MODEL_NAMES + [OWN_MODEL_NAME],
400
  type="value",
401
- label="B) Pick a BERT-like model.",
402
  )
403
  own_model_name = gr.Textbox(
404
- label="C) If you selected an 'add-your-own' model, put your models Hugging Face pipeline name here. We think it should work with any model that supports the fill-mask task.",
405
  )
406
 
407
  gr.Markdown("D) Pick if you want to the predictions normalied to these gendered terms only.")
408
  gr.Markdown("E) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above.")
409
- gr.Markdown("And F) the degree of polynomial fit used for high-lighting possible dose response trend.")
410
 
411
 
412
  with gr.Row():
@@ -416,11 +416,11 @@ with demo:
416
  type="index",
417
  )
418
  place_holder = gr.Textbox(
419
- label="E) Special token place-holder that used in input text that will be replaced with the above spectrum of values.",
420
  )
421
  n_fit = gr.Dropdown(
422
  list(range(1, 5)),
423
- label="F) Degree of polynomial fit for high-lighting possible dose response trend",
424
  type="value",
425
  )
426
 
@@ -429,8 +429,8 @@ with demo:
429
 
430
  with gr.Row():
431
  input_text = gr.Textbox(
432
- lines=3,
433
- label="G) Input text that includes gendered pronouns and your place-holder token specified above.",
434
  )
435
 
436
  gr.Markdown("## Outputs!")
 
8
  from transformers import pipeline
9
 
10
  MODEL_NAMES = ["bert-base-uncased", "roberta-base", "bert-large-uncased", "roberta-large"]
11
+ OWN_MODEL_NAME = 'add-a-model'
12
 
13
  DECIMAL_PLACES = 1
14
  EPS = 1e-5 # to avoid /0 errors
 
308
  'PLACE',
309
  "False",
310
  1,
311
+ 'She became an adult in PLACE.'
312
  ]
313
 
314
 
 
353
  demo = gr.Blocks()
354
  with demo:
355
  gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
356
+ gr.Markdown("Find spurious correlations between seemingly independent variables (for example between `gender` and `time`) in almost any BERT-like LLM on Hugging Face, below.")
357
 
358
+ gr.Markdown("See why this happens how in our paper, [Selection Bias Induced Spurious Correlations in Large Language Models](https://arxiv.org/pdf/2207.08982.pdf), presented at [ICML 2022 Workshop on Spurious Correlations, Invariance, and Stability](https://sites.google.com/view/scis-workshop/home).")
359
 
360
 
361
  gr.Markdown("## Instructions for this Demo")
362
+ gr.Markdown("1) Click on one of the examples below (where we sweep through a spectrum of `places`, `dates` and `subreddits`) to pre-populate the input fields.")
363
  gr.Markdown("2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!")
364
  gr.Markdown("3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!")
365
 
 
377
  gr.Markdown(
378
  "<-- x-axis sorted in order of increasing self-identified female participation (see [bburky](http://bburky.com/subredditgenderratios/)): ")
379
 
380
+ your_gen = gr.Button('Add-a-model example inputs')
381
  gr.Markdown("<-- x-axis dates, with your own model loaded! (If first time, try another example, it can take a while to load new model.)")
382
 
383
  gr.Markdown("## Input fields")
384
  gr.Markdown(
385
+ f"A) Pick a spectrum of comma separated values for text injection and x-axis.")
386
 
387
  with gr.Row():
388
  x_axis = gr.Textbox(
389
+ lines=3,
390
+ label="A) Comma separated values for text injection and x-axis",
391
  )
392
 
393
 
 
398
  model_name = gr.Radio(
399
  MODEL_NAMES + [OWN_MODEL_NAME],
400
  type="value",
401
+ label="B) BERT-like model.",
402
  )
403
  own_model_name = gr.Textbox(
404
+ label="C) If you selected an 'add-a-model' model, put any Hugging Face pipeline model name (that supports the fill-mask task) here.",
405
  )
406
 
407
  gr.Markdown("D) Pick if you want to the predictions normalied to these gendered terms only.")
408
  gr.Markdown("E) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above.")
409
+ gr.Markdown("And F) the degree of polynomial fit used for high-lighting potential spurious association.")
410
 
411
 
412
  with gr.Row():
 
416
  type="index",
417
  )
418
  place_holder = gr.Textbox(
419
+ label="E) Special token place-holder",
420
  )
421
  n_fit = gr.Dropdown(
422
  list(range(1, 5)),
423
+ label="F) Degree of polynomial fit",
424
  type="value",
425
  )
426
 
 
429
 
430
  with gr.Row():
431
  input_text = gr.Textbox(
432
+ lines=2,
433
+ label="G) Input text with pronouns and place-holder token",
434
  )
435
 
436
  gr.Markdown("## Outputs!")