Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,100 @@
|
|
1 |
-
import
|
2 |
-
import pandas as pd
|
3 |
import numpy as np
|
|
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
-
from transformers import
|
6 |
-
import
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
def
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
small_ranking_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
21 |
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
#
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
top_k_indices = np.argsort(similarities)[-top_k:][::-1]
|
45 |
|
46 |
-
|
47 |
-
st.write("Top-k retrieved passages:")
|
48 |
-
for passage in retrieved_passages:
|
49 |
-
st.write(passage)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
|
|
2 |
import numpy as np
|
3 |
+
import faiss
|
4 |
+
import streamlit as st
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
+
from beir import util
|
8 |
+
from beir.datasets.data_loader import GenericDataLoader
|
9 |
+
from beir.evaluation.evaluator import EvaluateRetrieval
|
10 |
|
11 |
+
# Function to load the dataset
|
12 |
+
def load_dataset():
|
13 |
+
dataset_name = "nq"
|
14 |
+
data_path = f"datasets/{dataset_name}.zip"
|
15 |
+
if not os.path.exists(data_path):
|
16 |
+
url = f"https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{dataset_name}.zip"
|
17 |
+
util.download_and_unzip(url, "datasets/")
|
18 |
+
|
19 |
+
corpus, queries, qrels = GenericDataLoader(data_path).load(split="test")
|
20 |
+
return corpus, queries, qrels
|
21 |
|
22 |
+
# Function for candidate retrieval
|
23 |
+
def candidate_retrieval(corpus, queries):
|
24 |
+
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
25 |
+
corpus_ids = list(corpus.keys())
|
26 |
+
corpus_texts = [corpus[pid]["text"] for pid in corpus_ids]
|
27 |
+
corpus_embeddings = embed_model.encode(corpus_texts, convert_to_numpy=True)
|
28 |
|
29 |
+
index = faiss.IndexFlatL2(corpus_embeddings.shape[1])
|
30 |
+
index.add(corpus_embeddings)
|
|
|
31 |
|
32 |
+
query_texts = [queries[qid] for qid in queries.keys()]
|
33 |
+
query_embeddings = embed_model.encode(query_texts, convert_to_numpy=True)
|
34 |
|
35 |
+
_, retrieved_indices = index.search(query_embeddings, 10)
|
36 |
+
return retrieved_indices, corpus_ids
|
37 |
|
38 |
+
# Function for reranking
|
39 |
+
def rerank_passages(retrieved_indices, corpus, queries):
|
40 |
+
cross_encoder_model = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
42 |
|
43 |
+
reranked_passages = []
|
44 |
+
for i, query in enumerate(queries.values()):
|
45 |
+
query_passage_pairs = [(query, corpus[corpus_ids[idx]]["text"]) for idx in retrieved_indices[i]]
|
46 |
+
inputs = tokenizer(query_passage_pairs, padding=True, truncation=True, return_tensors="pt")
|
47 |
+
scores = cross_encoder_model(**inputs).logits.squeeze(-1)
|
48 |
+
|
49 |
+
top_reranked_passages = [passage for _, passage in sorted(zip(scores, query_passage_pairs), key=lambda x: x[0], reverse=True)]
|
50 |
+
reranked_passages.append(top_reranked_passages)
|
51 |
|
52 |
+
return reranked_passages
|
53 |
+
|
54 |
+
# Function for evaluation
|
55 |
+
def evaluate(qrels, retrieved_indices, reranked_passages, queries):
|
56 |
+
evaluator = EvaluateRetrieval()
|
57 |
|
58 |
+
results_stage1 = {}
|
59 |
+
for i, query_id in enumerate(queries.keys()):
|
60 |
+
results_stage1[query_id] = {corpus_ids[idx]: 1 for idx in retrieved_indices[i]}
|
|
|
61 |
|
62 |
+
ndcg_score_stage1 = evaluator.evaluate(qrels, results_stage1, [10])['NDCG@10']
|
|
|
|
|
|
|
63 |
|
64 |
+
results_stage2 = {}
|
65 |
+
for i, query_id in enumerate(queries.keys()):
|
66 |
+
results_stage2[query_id] = {}
|
67 |
+
for passage in reranked_passages[i]:
|
68 |
+
for pid, doc in corpus.items():
|
69 |
+
if doc["text"] == passage[1]:
|
70 |
+
results_stage2[query_id][pid] = 1
|
71 |
+
break
|
72 |
|
73 |
+
ndcg_score_stage2 = evaluator.evaluate(qrels, results_stage2, [10])['NDCG@10']
|
74 |
+
return ndcg_score_stage1, ndcg_score_stage2
|
75 |
+
|
76 |
+
# Streamlit app
|
77 |
+
def main():
|
78 |
+
st.title("Multi-Stage Text Retrieval Pipeline")
|
79 |
|
80 |
+
if st.button("Load Dataset"):
|
81 |
+
corpus, queries, qrels = load_dataset()
|
82 |
+
st.success("Dataset loaded successfully!")
|
83 |
+
|
84 |
+
if st.button("Run Candidate Retrieval"):
|
85 |
+
retrieved_indices, corpus_ids = candidate_retrieval(corpus, queries)
|
86 |
+
st.success("Candidate retrieval completed!")
|
87 |
+
st.write("Retrieved indices:", retrieved_indices)
|
88 |
+
|
89 |
+
if st.button("Run Reranking"):
|
90 |
+
reranked_passages = rerank_passages(retrieved_indices, corpus, queries)
|
91 |
+
st.success("Reranking completed!")
|
92 |
+
st.write("Reranked passages:", reranked_passages)
|
93 |
+
|
94 |
+
if st.button("Evaluate"):
|
95 |
+
ndcg_score_stage1, ndcg_score_stage2 = evaluate(qrels, retrieved_indices, reranked_passages, queries)
|
96 |
+
st.write(f"NDCG@10 for Stage 1 (Candidate Retrieval): {ndcg_score_stage1}")
|
97 |
+
st.write(f"NDCG@10 for Stage 2 (Reranking): {ndcg_score_stage2}")
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|