Hwilner's picture
Update app.py
613aa57 verified
raw
history blame contribute delete
897 Bytes
import torch
import gradio as gr
from transformers import pipeline
# Use the Dicta IL model for summarization with a manual prompt in Hebrew
model_name = "dicta-il/dictalm2.0"
text_summary = pipeline("text2text-generation", model=model_name, torch_dtype=torch.bfloat16)
def summary(input):
# Create a prompt in Hebrew for summarization
prompt = f"סכם את הטקסט הבא: {input}"
# Increase max_length and set max_new_tokens to avoid input length issues
output = text_summary(prompt, max_new_tokens=512, min_length=30, do_sample=False)
return output[0]['generated_text']
gr.close_all()
demo = gr.Interface(
fn=summary,
inputs=[gr.Textbox(label="Input text to summarize", lines=6)],
outputs=[gr.Textbox(label="Summarized text", lines=4)],
title="Hebrew Text Summarizer",
description="This application will summarize Hebrew text."
)
demo.launch()