Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
# Use the Dicta IL model for summarization with a manual prompt in Hebrew | |
model_name = "dicta-il/dictalm2.0" | |
text_summary = pipeline("text2text-generation", model=model_name, torch_dtype=torch.bfloat16) | |
def summary(input): | |
# Create a prompt in Hebrew for summarization | |
prompt = f"סכם את הטקסט הבא: {input}" | |
# Increase max_length and set max_new_tokens to avoid input length issues | |
output = text_summary(prompt, max_new_tokens=512, min_length=30, do_sample=False) | |
return output[0]['generated_text'] | |
gr.close_all() | |
demo = gr.Interface( | |
fn=summary, | |
inputs=[gr.Textbox(label="Input text to summarize", lines=6)], | |
outputs=[gr.Textbox(label="Summarized text", lines=4)], | |
title="Hebrew Text Summarizer", | |
description="This application will summarize Hebrew text." | |
) | |
demo.launch() | |