Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ from langchain.prompts import PromptTemplate
|
|
9 |
import tempfile
|
10 |
from gtts import gTTS
|
11 |
import os
|
|
|
|
|
12 |
|
13 |
def text_to_speech(text):
|
14 |
tts = gTTS(text=text, lang='en')
|
@@ -18,19 +20,44 @@ def text_to_speech(text):
|
|
18 |
st.audio(temp_filename, format='audio/mp3')
|
19 |
os.remove(temp_filename)
|
20 |
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def get_text_chunks(text):
|
30 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
31 |
chunks = text_splitter.split_text(text)
|
32 |
return chunks
|
33 |
-
|
34 |
def get_vector_store(text_chunks, api_key):
|
35 |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
36 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
@@ -62,11 +89,10 @@ def user_input(user_question, api_key):
|
|
62 |
chain = get_conversational_chain()
|
63 |
|
64 |
response = chain(
|
65 |
-
{"input_documents":docs, "question": user_question}
|
66 |
-
|
|
|
67 |
|
68 |
-
print(response) # Debugging line
|
69 |
-
|
70 |
st.write("Replies:")
|
71 |
if isinstance(response["output_text"], str):
|
72 |
response_list = [response["output_text"]]
|
@@ -87,23 +113,25 @@ def main():
|
|
87 |
|
88 |
with st.sidebar:
|
89 |
st.title("Menu:")
|
90 |
-
|
91 |
if st.button("Submit & Process"):
|
92 |
with st.spinner("Processing..."):
|
93 |
-
raw_text =
|
|
|
|
|
|
|
94 |
text_chunks = get_text_chunks(raw_text)
|
95 |
get_vector_store(text_chunks, api_key)
|
96 |
st.success("Done")
|
97 |
|
98 |
# Check if any document is uploaded
|
99 |
-
if
|
100 |
user_question = st.text_input("Ask a question from the Docs")
|
101 |
|
102 |
if user_question:
|
103 |
user_input(user_question, api_key)
|
104 |
else:
|
105 |
-
st.write("Please upload a document first to ask questions.")
|
106 |
|
107 |
-
|
108 |
if __name__ == "__main__":
|
109 |
-
main()
|
|
|
9 |
import tempfile
|
10 |
from gtts import gTTS
|
11 |
import os
|
12 |
+
import docx
|
13 |
+
from pptx import Presentation
|
14 |
|
15 |
def text_to_speech(text):
|
16 |
tts = gTTS(text=text, lang='en')
|
|
|
20 |
st.audio(temp_filename, format='audio/mp3')
|
21 |
os.remove(temp_filename)
|
22 |
|
23 |
+
def read_text_from_pdf(pdf_file):
|
24 |
+
pdf_reader = PdfReader(pdf_file)
|
25 |
+
text = ""
|
26 |
+
for page in pdf_reader.pages:
|
27 |
+
text += page.extract_text()
|
28 |
+
return text
|
29 |
+
|
30 |
+
def read_text_from_docx(docx_file):
|
31 |
+
doc = docx.Document(docx_file)
|
32 |
+
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
33 |
+
return text
|
34 |
+
|
35 |
+
def read_text_from_pptx(pptx_file):
|
36 |
+
presentation = Presentation(pptx_file)
|
37 |
+
text = ""
|
38 |
+
for slide in presentation.slides:
|
39 |
+
for shape in slide.shapes:
|
40 |
+
if hasattr(shape, "text"):
|
41 |
+
text += shape.text + "\n"
|
42 |
+
return text
|
43 |
+
|
44 |
+
def get_text_from_file(file):
|
45 |
+
content = ""
|
46 |
+
if file.type == "application/pdf":
|
47 |
+
content = read_text_from_pdf(file)
|
48 |
+
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
49 |
+
content = read_text_from_docx(file)
|
50 |
+
elif file.type == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
|
51 |
+
content = read_text_from_pptx(file)
|
52 |
+
elif file.type == "text/plain":
|
53 |
+
content = file.getvalue().decode("utf-8")
|
54 |
+
return content
|
55 |
|
56 |
def get_text_chunks(text):
|
57 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
58 |
chunks = text_splitter.split_text(text)
|
59 |
return chunks
|
60 |
+
|
61 |
def get_vector_store(text_chunks, api_key):
|
62 |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
63 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
|
|
89 |
chain = get_conversational_chain()
|
90 |
|
91 |
response = chain(
|
92 |
+
{"input_documents": docs, "question": user_question},
|
93 |
+
return_only_outputs=True
|
94 |
+
)
|
95 |
|
|
|
|
|
96 |
st.write("Replies:")
|
97 |
if isinstance(response["output_text"], str):
|
98 |
response_list = [response["output_text"]]
|
|
|
113 |
|
114 |
with st.sidebar:
|
115 |
st.title("Menu:")
|
116 |
+
uploaded_files = st.file_uploader("Upload your files (PDF, DOCX, PPTX, TXT)", accept_multiple_files=True)
|
117 |
if st.button("Submit & Process"):
|
118 |
with st.spinner("Processing..."):
|
119 |
+
raw_text = ""
|
120 |
+
for file in uploaded_files:
|
121 |
+
file_text = get_text_from_file(file)
|
122 |
+
raw_text += file_text
|
123 |
text_chunks = get_text_chunks(raw_text)
|
124 |
get_vector_store(text_chunks, api_key)
|
125 |
st.success("Done")
|
126 |
|
127 |
# Check if any document is uploaded
|
128 |
+
if uploaded_files:
|
129 |
user_question = st.text_input("Ask a question from the Docs")
|
130 |
|
131 |
if user_question:
|
132 |
user_input(user_question, api_key)
|
133 |
else:
|
134 |
+
st.write("Please upload a document (PDF, DOCX, PPTX, TXT) first to ask questions.")
|
135 |
|
|
|
136 |
if __name__ == "__main__":
|
137 |
+
main()
|