docs-bot / app.py
Huzaifa367's picture
Update app.py
a1d3ca5 verified
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import tempfile
from gtts import gTTS
import os
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def text_to_speech(text):
tts = gTTS(text=text, lang='en')
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
temp_filename = audio_file.name
tts.save(temp_filename)
st.audio(temp_filename, format='audio/mp3')
os.remove(temp_filename)
def user_input(user_question, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
st.write("Replies:")
if isinstance(response["output_text"], str):
response_list = [response["output_text"]]
else:
response_list = response["output_text"]
for text in response_list:
st.write(text)
# Convert text to speech for each response
text_to_speech(text)
def main():
st.set_page_config(layout="wide")
st.header("Chat with DOCS")
st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
api_key = st.secrets["inference_api_key"]
# Sidebar column for file upload
with st.sidebar:
st.header("Chat with PDF")
pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=["pdf"])
# Main column for displaying extracted text and user interaction
col1, col2 = st.columns([1, 2])
raw_text = None
if pdf_docs is None:
with col1:
st.write("Please upload a document first to proceed.")
if pdf_docs:
with col1:
if st.button("Submit"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks, api_key)
st.success("Processing Complete")
user_question = st.text_input("Ask a question from the Docs")
if user_question:
raw_text = get_pdf_text(pdf_docs)
user_input(user_question, api_key)
# Display extracted text if available
if raw_text is not None:
with col2:
st.subheader("Extracted Text from PDF:")
st.text(raw_text)
if __name__ == "__main__":
main()