File size: 3,044 Bytes
dbb04fd
 
8eb9d7a
 
 
 
 
dbb04fd
8eb9d7a
dbb04fd
 
8eb9d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbb04fd
8eb9d7a
 
 
 
 
dbb04fd
8eb9d7a
dbb04fd
8eb9d7a
 
 
 
 
 
 
dbb04fd
 
 
 
 
8eb9d7a
 
 
 
 
 
 
 
dbb04fd
8eb9d7a
 
 
 
 
 
 
 
 
 
 
 
 
dbb04fd
8eb9d7a
dbb04fd
8eb9d7a
 
dbb04fd
8eb9d7a
 
dbb04fd
8eb9d7a
 
 
 
dbb04fd
8eb9d7a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st
import torch
import numpy as np
from PIL import Image
import random
import uuid
from diffusers import PixArtAlphaPipeline

# Check for CUDA availability
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load the PixArtAlphaPipeline
if torch.cuda.is_available():
    pipe = PixArtAlphaPipeline.from_pretrained(
        "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.to(device)
    st.write("Model loaded successfully!")
else:
    st.error("This demo requires GPU support, which is not available on this system.")

# Constants
MAX_SEED = np.iinfo(np.int32).max

# Function to save image and return the path
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

# Main function for image generation
def generate_image(prompt, style, use_negative_prompt, negative_prompt, seed, width, height, inference_steps):
    generator = torch.Generator().manual_seed(seed)

    # Apply the selected style
    if style == "(No style)":
        prompt_text = prompt
    else:
        prompt_text, _ = apply_style(style, prompt, negative_prompt)

    # Generate the image
    images = pipe(
        prompt=prompt_text,
        negative_prompt=None,
        width=width,
        height=height,
        guidance_scale=0,
        num_inference_steps=inference_steps,
        generator=generator,
        num_images_per_prompt=1,
        use_resolution_binning=True,
        output_type="pil",
    ).images

    # Save the image and display
    if images:
        img_path = save_image(images[0])
        img = Image.open(img_path)
        st.image(img, caption="Generated Image", use_column_width=True)
        st.success("Image generated successfully!")
    else:
        st.error("Failed to generate image. Please try again.")

# Helper function to apply selected style
def apply_style(style_name, positive, negative):
    # Define styles dictionary (similar to your Gradio code)
    styles = {
        "(No style)": (positive, ""),
        "Cinematic": ("cinematic still " + positive, "anime, cartoon, ..."),
        "Realistic": ("Photorealistic " + positive, "drawing, painting, ..."),
        # Add other styles here...
    }
    return styles.get(style_name, styles["(No style)"])

# Streamlit UI
st.title("Instant Image Generator")

prompt = st.text_input("Prompt", "Enter your prompt")

style_names = ["(No style)", "Cinematic", "Realistic"]  # Add other styles here...
style = st.selectbox("Image Style", style_names)

use_negative_prompt = st.checkbox("Use negative prompt")
negative_prompt = st.text_input("Negative prompt", "")

seed = st.slider("Seed", 0, MAX_SEED, 0)
width = st.slider("Width", 256, 4192, 1024, step=32)
height = st.slider("Height", 256, 4192, 1024, step=32)
inference_steps = st.slider("Steps", 4, 20, 4)

if st.button("Generate Image"):
    generate_image(prompt, style, use_negative_prompt, negative_prompt, seed, width, height, inference_steps)