andreped commited on
Commit
97e9ddc
·
unverified ·
1 Parent(s): 9b6256d

Setup repo + demo

Browse files
.dockerignore ADDED
File without changes
Dockerfile ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
+ # you will also find guides on how best to write your Dockerfile
3
+
4
+ # creates virtual ubuntu in docker image
5
+ FROM ubuntu:22.04
6
+
7
+ # set language, format and stuff
8
+ ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
9
+
10
+ # NOTE: using -y is conveniently to automatically answer yes to all the questions
11
+ # installing python3 with a specific version
12
+ RUN apt-get update -y
13
+ RUN apt-get upgrade -y
14
+ RUN apt install software-properties-common -y
15
+ RUN add-apt-repository ppa:deadsnakes/ppa -y
16
+ RUN apt update
17
+ RUN apt install python3.7 -y
18
+ RUN apt install python3.7-distutils -y
19
+ RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.7 1
20
+
21
+ # installing other libraries
22
+ RUN apt-get install python3-pip -y && \
23
+ apt-get -y install sudo
24
+ RUN apt-get install curl -y
25
+ RUN apt-get install nano -y
26
+ RUN apt-get update && apt-get install -y git
27
+ RUN apt-get install libblas-dev -y && apt-get install liblapack-dev -y
28
+ RUN apt-get install gfortran -y
29
+ RUN apt-get install libpng-dev -y
30
+ RUN apt-get install python3-dev -y
31
+ # RUN apt-get -y install cmake curl
32
+
33
+ WORKDIR /code
34
+
35
+ # install dependencies
36
+ COPY ./requirements.txt /code/requirements.txt
37
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
38
+
39
+ # resolve issue with tf==2.4 and gradio dependency collision issue
40
+ RUN pip install --force-reinstall typing_extensions==4.7.1
41
+
42
+ # Install wget
43
+ RUN apt install wget -y && \
44
+ apt install unzip
45
+
46
+ # Set up a new user named "user" with user ID 1000
47
+ RUN useradd -m -u 1000 user
48
+
49
+ # Switch to the "user" user
50
+ USER user
51
+
52
+ # Set home to the user's home directory
53
+ ENV HOME=/home/user \
54
+ PATH=/home/user/.local/bin:$PATH
55
+
56
+ # Set the working directory to the user's home directory
57
+ WORKDIR $HOME/app
58
+
59
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
60
+ COPY --chown=user . $HOME/app
61
+
62
+ # Download pretrained models
63
+ RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-CT_Airways-ONNX-v12.zip" && \
64
+ unzip "Raidionics-CT_Airways-ONNX-v12.zip" && mkdir -p resources/models/ && mv CT_Airways/ resources/models/CT_Airways/
65
+ RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-CT_Lungs-ONNX-v12.zip" && \
66
+ unzip "Raidionics-CT_Lungs-ONNX-v12.zip" && mv CT_Lungs/ resources/models/CT_Lungs/
67
+
68
+ RUN rm -r *.zip
69
+
70
+ # Download test sample
71
+ RUN wget "https://github.com/andreped/neukit/releases/download/test-data/test_thorax_CT.nii.gz"
72
+
73
+ # CMD ["/bin/bash"]
74
+ CMD ["python3", "app.py"]
LICENSE.md ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 André Pedersen
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
demo/README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hugging Face demo - through docker SDK
2
+
3
+ Deploying simple models in a gradio-based web interface in Hugging Face spaces is easy.
4
+ For any other custom pipeline, with various dependencies and challenging behaviour, it
5
+ might be necessary to use Docker containers instead.
6
+
7
+ For every new push to the main branch, continuous deployment to the Hugging Face
8
+ `AeroPath` space is performed through a GitHub Actions workflow.
9
+
10
+ When the space is updated, the Docker image is rebuilt/updated (caching if possible).
11
+ Then when finished, the end users can test the app as they please.
12
+
13
+ Right now, the functionality of the app is extremely limited, only offering a widget
14
+ for uploading a NIfTI file (`.nii` or `.nii.gz`) and visualizing the produced surface
15
+ of the predicted lung tumor volume when finished processing.
16
+
17
+ Analysis process can be monitored from the `Logs` tab next to the `Running` button
18
+ in the Hugging Face `AeroPath` space.
19
+
20
+ It is also possible to build the app as a docker image and deploy it. To do so follow these steps:
21
+
22
+ ```
23
+ docker build -t AeroPath:latest ..
24
+ docker run -it -p 7860:7860 AeroPath:latest
25
+ ```
26
+
27
+ Then open `http://localhost:7860` in your favourite internet browser to view the demo.
28
+
29
+ TODOs:
30
+ - [X] Add gallery widget to enable scrolling through 2D slices
31
+ - [X] Render segmentation for individual 2D slices as overlays
demo/app.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.gui import WebUI
2
+
3
+
4
+ def main():
5
+ print("Launching demo...")
6
+
7
+ # cwd = "/Users/andreped/workspace/AeroPath/" # local testing -> macOS
8
+ cwd = "/home/user/app/" # production -> docker
9
+
10
+ class_name = "tumor"
11
+
12
+ # initialize and run app
13
+ app = WebUI(class_name=class_name, cwd=cwd)
14
+ app.run()
15
+
16
+
17
+ if __name__ == "__main__":
18
+ main()
demo/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ lungtumormask @ git+https://github.com/vemundfredriksen/LungTumorMask.git
2
+ gradio==3.44.4
demo/src/__init__.py ADDED
File without changes
demo/src/compute.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import configparser
2
+ import logging
3
+ import os
4
+ import shutil
5
+
6
+
7
+ def run_model(
8
+ input_path: str,
9
+ model_path: str,
10
+ verbose: str = "info",
11
+ task: str = "MRI_Meningioma",
12
+ name: str = "Tumor",
13
+ ):
14
+ logging.basicConfig()
15
+ logging.getLogger().setLevel(logging.WARNING)
16
+
17
+ if verbose == "debug":
18
+ logging.getLogger().setLevel(logging.DEBUG)
19
+ elif verbose == "info":
20
+ logging.getLogger().setLevel(logging.INFO)
21
+ elif verbose == "error":
22
+ logging.getLogger().setLevel(logging.ERROR)
23
+ else:
24
+ raise ValueError("Unsupported verbose value provided:", verbose)
25
+
26
+ # delete patient/result folder if they exist
27
+ if os.path.exists("./patient/"):
28
+ shutil.rmtree("./patient/")
29
+ if os.path.exists("./result/"):
30
+ shutil.rmtree("./result/")
31
+
32
+ try:
33
+ # setup temporary patient directory
34
+ filename = input_path.split("/")[-1]
35
+ splits = filename.split(".")
36
+ extension = ".".join(splits[1:])
37
+ patient_directory = "./patient/"
38
+ os.makedirs(patient_directory + "T0/", exist_ok=True)
39
+ shutil.copy(
40
+ input_path,
41
+ patient_directory + "T0/" + splits[0] + "-t1gd." + extension,
42
+ )
43
+
44
+ # define output directory to save results
45
+ output_path = "./result/prediction-" + splits[0] + "/"
46
+ os.makedirs(output_path, exist_ok=True)
47
+
48
+ # Setting up the configuration file
49
+ rads_config = configparser.ConfigParser()
50
+ rads_config.add_section("Default")
51
+ rads_config.set("Default", "task", "neuro_diagnosis")
52
+ rads_config.set("Default", "caller", "")
53
+ rads_config.add_section("System")
54
+ rads_config.set("System", "gpu_id", "-1")
55
+ rads_config.set("System", "input_folder", patient_directory)
56
+ rads_config.set("System", "output_folder", output_path)
57
+ rads_config.set("System", "model_folder", model_path)
58
+ rads_config.set(
59
+ "System",
60
+ "pipeline_filename",
61
+ os.path.join(model_path, task, "pipeline.json"),
62
+ )
63
+ rads_config.add_section("Runtime")
64
+ rads_config.set(
65
+ "Runtime", "reconstruction_method", "thresholding"
66
+ ) # thresholding, probabilities
67
+ rads_config.set("Runtime", "reconstruction_order", "resample_first")
68
+ rads_config.set("Runtime", "use_preprocessed_data", "False")
69
+
70
+ with open("rads_config.ini", "w") as f:
71
+ rads_config.write(f)
72
+
73
+ # finally, run inference
74
+ from raidionicsrads.compute import run_rads
75
+
76
+ run_rads(config_filename="rads_config.ini")
77
+
78
+ # rename and move final result
79
+ os.rename(
80
+ "./result/prediction-"
81
+ + splits[0]
82
+ + "/T0/"
83
+ + splits[0]
84
+ + "-t1gd_annotation-"
85
+ + name
86
+ + ".nii.gz",
87
+ "./prediction.nii.gz",
88
+ )
89
+
90
+ except Exception as e:
91
+ print(e)
92
+
93
+ # Clean-up
94
+ if os.path.exists(patient_directory):
95
+ shutil.rmtree(patient_directory)
96
+ if os.path.exists(output_path):
97
+ shutil.rmtree(output_path)
demo/src/convert.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nibabel as nib
2
+ from nibabel.processing import resample_to_output
3
+ from skimage.measure import marching_cubes
4
+
5
+
6
+ def nifti_to_glb(path, output="prediction.obj"):
7
+ # load NIFTI into numpy array
8
+ image = nib.load(path)
9
+ resampled = resample_to_output(image, [1, 1, 1], order=1)
10
+ data = resampled.get_fdata().astype("uint8")
11
+
12
+ # extract surface
13
+ verts, faces, normals, values = marching_cubes(data, 0)
14
+ faces += 1
15
+
16
+ with open(output, 'w') as thefile:
17
+ for item in verts:
18
+ thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2]))
19
+
20
+ for item in normals:
21
+ thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2]))
22
+
23
+ for item in faces:
24
+ thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2]))
demo/src/gui.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from .utils import load_ct_to_numpy, load_pred_volume_to_numpy
3
+ from .compute import run_model
4
+ from .convert import nifti_to_glb
5
+
6
+
7
+ class WebUI:
8
+ def __init__(self, class_name:str = None, cwd:str = None):
9
+ # global states
10
+ self.images = []
11
+ self.pred_images = []
12
+
13
+ # @TODO: This should be dynamically set based on chosen volume size
14
+ self.nb_slider_items = 300
15
+
16
+ self.class_name = class_name
17
+ self.cwd = cwd
18
+
19
+ # define widgets not to be rendered immediantly, but later on
20
+ self.slider = gr.Slider(1, self.nb_slider_items, value=1, step=1, label="Which 2D slice to show")
21
+ self.volume_renderer = gr.Model3D(
22
+ clear_color=[0.0, 0.0, 0.0, 0.0],
23
+ label="3D Model",
24
+ visible=True,
25
+ elem_id="model-3d",
26
+ ).style(height=512)
27
+
28
+ def combine_ct_and_seg(self, img, pred):
29
+ return (img, [(pred, self.class_name)])
30
+
31
+ def upload_file(self, file):
32
+ return file.name
33
+
34
+ def load_mesh(self, mesh_file_name):
35
+ path = mesh_file_name.name
36
+ run_model(path)
37
+ nifti_to_glb("./prediction.nii.gz")
38
+ self.images = load_ct_to_numpy(path)
39
+ self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
40
+ self.slider = self.slider.update(value=2)
41
+ return "./prediction.obj"
42
+
43
+ def get_img_pred_pair(self, k):
44
+ k = int(k) - 1
45
+ out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
46
+ out[k] = gr.AnnotatedImage.update(self.combine_ct_and_seg(self.images[k], self.pred_images[k]), visible=True)
47
+ return out
48
+
49
+ def run(self):
50
+ css="""
51
+ #model-3d {
52
+ height: 512px;
53
+ }
54
+ #model-2d {
55
+ height: 512px;
56
+ margin: auto;
57
+ }
58
+ """
59
+ with gr.Blocks(css=css) as demo:
60
+
61
+ with gr.Row():
62
+ file_output = gr.File(
63
+ file_types=[".nii", ".nii.nz"],
64
+ file_count="single"
65
+ ).style(full_width=False, size="sm")
66
+ file_output.upload(self.upload_file, file_output, file_output)
67
+
68
+ run_btn = gr.Button("Run analysis").style(full_width=False, size="sm")
69
+ run_btn.click(
70
+ fn=lambda x: self.load_mesh(x),
71
+ inputs=file_output,
72
+ outputs=self.volume_renderer
73
+ )
74
+
75
+ with gr.Row():
76
+ gr.Examples(
77
+ examples=[self.cwd + "lung_001.nii.gz"],
78
+ inputs=file_output,
79
+ outputs=file_output,
80
+ fn=self.upload_file,
81
+ cache_examples=True,
82
+ )
83
+
84
+ with gr.Row():
85
+ with gr.Box():
86
+ image_boxes = []
87
+ for i in range(self.nb_slider_items):
88
+ visibility = True if i == 1 else False
89
+ t = gr.AnnotatedImage(visible=visibility, elem_id="model-2d")\
90
+ .style(color_map={self.class_name: "#ffae00"}, height=512, width=512)
91
+ image_boxes.append(t)
92
+
93
+ self.slider.change(self.get_img_pred_pair, self.slider, image_boxes)
94
+
95
+ with gr.Box():
96
+ self.volume_renderer.render()
97
+
98
+ with gr.Row():
99
+ self.slider.render()
100
+
101
+ # sharing app publicly -> share=True: https://gradio.app/sharing-your-app/
102
+ # inference times > 60 seconds -> need queue(): https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
103
+ demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
demo/src/utils.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nibabel as nib
2
+ import numpy as np
3
+
4
+
5
+ def load_ct_to_numpy(data_path):
6
+ if type(data_path) != str:
7
+ data_path = data_path.name
8
+
9
+ image = nib.load(data_path)
10
+ data = image.get_fdata()
11
+
12
+ data = np.rot90(data, k=1, axes=(0, 1))
13
+
14
+ data[data < -1024] = 1024
15
+ data[data > 1024] = 1024
16
+
17
+ data = data - np.amin(data)
18
+ data = data / np.amax(data) * 255
19
+ data = data.astype("uint8")
20
+
21
+ print(data.shape)
22
+ return [data[..., i] for i in range(data.shape[-1])]
23
+
24
+
25
+ def load_pred_volume_to_numpy(data_path):
26
+ if type(data_path) != str:
27
+ data_path = data_path.name
28
+
29
+ image = nib.load(data_path)
30
+ data = image.get_fdata()
31
+
32
+ data = np.rot90(data, k=1, axes=(0, 1))
33
+
34
+ data[data > 0] = 1
35
+ data = data.astype("uint8")
36
+
37
+ print(data.shape)
38
+ return [data[..., i] for i in range(data.shape[-1])]
setup.cfg ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [metadata]
2
+ description-file = README.md
3
+
4
+ [isort]
5
+ force_single_line=True
6
+ known_first_party=aeropath
7
+ line_length=80
8
+ profile=black
9
+
10
+ [flake8]
11
+ # imported but unused in __init__.py, that's ok.
12
+ per-file-ignores=*__init__.py:F401
13
+ ignore=E203,W503,W605,F632,E266,E731,E712,E741
14
+ max-line-length=80