|
import nibabel as nib |
|
import numpy as np |
|
from nibabel.processing import resample_to_output |
|
from skimage.measure import marching_cubes |
|
|
|
|
|
def load_ct_to_numpy(data_path): |
|
if type(data_path) != str: |
|
data_path = data_path.name |
|
|
|
image = nib.load(data_path) |
|
data = image.get_fdata() |
|
|
|
data = np.rot90(data, k=1, axes=(0, 1)) |
|
|
|
data[data < -1024] = 1024 |
|
data[data > 1024] = 1024 |
|
|
|
data = data - np.amin(data) |
|
data = data / np.amax(data) * 255 |
|
data = data.astype("uint8") |
|
|
|
print(data.shape) |
|
return [data[..., i] for i in range(data.shape[-1])] |
|
|
|
|
|
def load_pred_volume_to_numpy(data_path): |
|
if type(data_path) != str: |
|
data_path = data_path.name |
|
|
|
image = nib.load(data_path) |
|
data = image.get_fdata() |
|
|
|
data = np.rot90(data, k=1, axes=(0, 1)) |
|
|
|
data[data > 0] = 1 |
|
data = data.astype("uint8") |
|
|
|
print(data.shape) |
|
return [data[..., i] for i in range(data.shape[-1])] |
|
|
|
|
|
def nifti_to_glb(path, output="prediction.obj"): |
|
|
|
image = nib.load(path) |
|
resampled = resample_to_output(image, [1, 1, 1], order=1) |
|
data = resampled.get_fdata().astype("uint8") |
|
|
|
|
|
verts, faces, normals, values = marching_cubes(data, 0) |
|
faces += 1 |
|
|
|
with open(output, "w") as thefile: |
|
for item in verts: |
|
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2])) |
|
|
|
for item in normals: |
|
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2])) |
|
|
|
for item in faces: |
|
thefile.write( |
|
"f {0}//{0} {1}//{1} {2}//{2}\n".format( |
|
item[0], item[1], item[2] |
|
) |
|
) |
|
|