Fixed local demo launch
Browse files- .dockerignore +6 -0
- .gitignore +7 -0
- demo/app.py +28 -5
- demo/requirements.txt +2 -1
- demo/src/convert.py +0 -24
- demo/src/gui.py +105 -40
- demo/src/utils.py +27 -0
.dockerignore
CHANGED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
*.nii
|
3 |
+
*.nii.gz
|
4 |
+
*.pyc
|
5 |
+
*.egg-info
|
6 |
+
*.csv
|
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
*.nii
|
3 |
+
*.nii.gz
|
4 |
+
*.pyc
|
5 |
+
*.egg-info
|
6 |
+
*.csv
|
7 |
+
*.ini
|
demo/app.py
CHANGED
@@ -1,16 +1,39 @@
|
|
|
|
|
|
|
|
1 |
from src.gui import WebUI
|
2 |
|
3 |
|
4 |
def main():
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
cwd = "/home/user/app/" # production -> docker
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# initialize and run app
|
13 |
-
|
|
|
14 |
app.run()
|
15 |
|
16 |
|
|
|
1 |
+
import os
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
from src.gui import WebUI
|
5 |
|
6 |
|
7 |
def main():
|
8 |
+
parser = ArgumentParser()
|
9 |
+
parser.add_argument(
|
10 |
+
"--cwd",
|
11 |
+
type=str,
|
12 |
+
default="/home/user/app/",
|
13 |
+
help="Set current working directory (path to app.py).",
|
14 |
+
)
|
15 |
+
parser.add_argument(
|
16 |
+
"--share",
|
17 |
+
type=int,
|
18 |
+
default=1,
|
19 |
+
help="Whether to enable the app to be accessible online"
|
20 |
+
"-> setups a public link which requires internet access.",
|
21 |
+
)
|
22 |
+
args = parser.parse_args()
|
23 |
|
24 |
+
print("Current working directory:", args.cwd)
|
|
|
25 |
|
26 |
+
if not os.path.exists(args.cwd):
|
27 |
+
raise ValueError("Chosen 'cwd' is not a valid path!")
|
28 |
+
if args.share not in [0, 1]:
|
29 |
+
raise ValueError(
|
30 |
+
"The 'share' argument can only be set to 0 or 1, but was:",
|
31 |
+
args.share,
|
32 |
+
)
|
33 |
|
34 |
# initialize and run app
|
35 |
+
print("Launching demo...")
|
36 |
+
app = WebUI(cwd=args.cwd, share=args.share)
|
37 |
app.run()
|
38 |
|
39 |
|
demo/requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
-
raidionicsrads
|
2 |
gradio==3.44.4
|
|
|
|
1 |
+
raidionicsrads@git+https://github.com/andreped/raidionics_rads_lib.git
|
2 |
gradio==3.44.4
|
3 |
+
pandas==2.0.0
|
demo/src/convert.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
import nibabel as nib
|
2 |
-
from nibabel.processing import resample_to_output
|
3 |
-
from skimage.measure import marching_cubes
|
4 |
-
|
5 |
-
|
6 |
-
def nifti_to_glb(path, output="prediction.obj"):
|
7 |
-
# load NIFTI into numpy array
|
8 |
-
image = nib.load(path)
|
9 |
-
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
10 |
-
data = resampled.get_fdata().astype("uint8")
|
11 |
-
|
12 |
-
# extract surface
|
13 |
-
verts, faces, normals, values = marching_cubes(data, 0)
|
14 |
-
faces += 1
|
15 |
-
|
16 |
-
with open(output, 'w') as thefile:
|
17 |
-
for item in verts:
|
18 |
-
thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
19 |
-
|
20 |
-
for item in normals:
|
21 |
-
thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
22 |
-
|
23 |
-
for item in faces:
|
24 |
-
thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo/src/gui.py
CHANGED
@@ -1,11 +1,20 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
from .compute import run_model
|
4 |
-
from .
|
|
|
|
|
5 |
|
6 |
|
7 |
class WebUI:
|
8 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
9 |
# global states
|
10 |
self.images = []
|
11 |
self.pred_images = []
|
@@ -13,11 +22,27 @@ class WebUI:
|
|
13 |
# @TODO: This should be dynamically set based on chosen volume size
|
14 |
self.nb_slider_items = 300
|
15 |
|
16 |
-
self.
|
17 |
self.cwd = cwd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# define widgets not to be rendered immediantly, but later on
|
20 |
-
self.slider = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
self.volume_renderer = gr.Model3D(
|
22 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
23 |
label="3D Model",
|
@@ -25,29 +50,41 @@ class WebUI:
|
|
25 |
elem_id="model-3d",
|
26 |
).style(height=512)
|
27 |
|
|
|
|
|
|
|
|
|
28 |
def combine_ct_and_seg(self, img, pred):
|
29 |
return (img, [(pred, self.class_name)])
|
30 |
-
|
31 |
def upload_file(self, file):
|
32 |
return file.name
|
33 |
-
|
34 |
-
def
|
35 |
path = mesh_file_name.name
|
36 |
-
run_model(
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
self.images = load_ct_to_numpy(path)
|
39 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
40 |
-
self.slider = self.slider.update(value=2)
|
41 |
return "./prediction.obj"
|
42 |
-
|
43 |
def get_img_pred_pair(self, k):
|
44 |
k = int(k) - 1
|
45 |
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
|
46 |
-
out[k] = gr.AnnotatedImage.update(
|
|
|
|
|
|
|
47 |
return out
|
48 |
|
49 |
def run(self):
|
50 |
-
css="""
|
51 |
#model-3d {
|
52 |
height: 512px;
|
53 |
}
|
@@ -55,49 +92,77 @@ class WebUI:
|
|
55 |
height: 512px;
|
56 |
margin: auto;
|
57 |
}
|
|
|
|
|
|
|
58 |
"""
|
59 |
with gr.Blocks(css=css) as demo:
|
60 |
-
|
61 |
with gr.Row():
|
62 |
-
file_output = gr.File(
|
63 |
-
file_types=[".nii", ".nii.nz"],
|
64 |
-
file_count="single"
|
65 |
-
).style(full_width=False, size="sm")
|
66 |
file_output.upload(self.upload_file, file_output, file_output)
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
run_btn.click(
|
70 |
-
fn=lambda x: self.
|
71 |
inputs=file_output,
|
72 |
-
outputs=self.volume_renderer
|
73 |
)
|
74 |
-
|
75 |
with gr.Row():
|
76 |
gr.Examples(
|
77 |
-
examples=[
|
|
|
|
|
78 |
inputs=file_output,
|
79 |
outputs=file_output,
|
80 |
fn=self.upload_file,
|
81 |
cache_examples=True,
|
82 |
)
|
83 |
-
|
84 |
with gr.Row():
|
85 |
with gr.Box():
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
with gr.Box():
|
96 |
self.volume_renderer.render()
|
97 |
-
|
98 |
-
with gr.Row():
|
99 |
-
self.slider.render()
|
100 |
|
101 |
-
# sharing app publicly -> share=True:
|
102 |
-
#
|
103 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
|
5 |
from .compute import run_model
|
6 |
+
from .utils import load_ct_to_numpy
|
7 |
+
from .utils import load_pred_volume_to_numpy
|
8 |
+
from .utils import nifti_to_glb
|
9 |
|
10 |
|
11 |
class WebUI:
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
model_name: str = None,
|
15 |
+
cwd: str = "/home/user/app/",
|
16 |
+
share: int = 1,
|
17 |
+
):
|
18 |
# global states
|
19 |
self.images = []
|
20 |
self.pred_images = []
|
|
|
22 |
# @TODO: This should be dynamically set based on chosen volume size
|
23 |
self.nb_slider_items = 300
|
24 |
|
25 |
+
self.model_name = model_name
|
26 |
self.cwd = cwd
|
27 |
+
self.share = share
|
28 |
+
|
29 |
+
self.class_name = "airways" # default
|
30 |
+
self.class_names = {
|
31 |
+
"airways": "CT_Airways",
|
32 |
+
}
|
33 |
+
|
34 |
+
self.result_names = {
|
35 |
+
"airways": "Airway",
|
36 |
+
}
|
37 |
|
38 |
# define widgets not to be rendered immediantly, but later on
|
39 |
+
self.slider = gr.Slider(
|
40 |
+
1,
|
41 |
+
self.nb_slider_items,
|
42 |
+
value=1,
|
43 |
+
step=1,
|
44 |
+
label="Which 2D slice to show",
|
45 |
+
)
|
46 |
self.volume_renderer = gr.Model3D(
|
47 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
48 |
label="3D Model",
|
|
|
50 |
elem_id="model-3d",
|
51 |
).style(height=512)
|
52 |
|
53 |
+
def set_class_name(self, value):
|
54 |
+
print("Changed task to:", value)
|
55 |
+
self.class_name = value
|
56 |
+
|
57 |
def combine_ct_and_seg(self, img, pred):
|
58 |
return (img, [(pred, self.class_name)])
|
59 |
+
|
60 |
def upload_file(self, file):
|
61 |
return file.name
|
62 |
+
|
63 |
+
def process(self, mesh_file_name):
|
64 |
path = mesh_file_name.name
|
65 |
+
run_model(
|
66 |
+
path,
|
67 |
+
model_path=os.path.join(self.cwd, "resources/models/"),
|
68 |
+
task=self.class_names[self.class_name],
|
69 |
+
name=self.result_names[self.class_name],
|
70 |
+
)
|
71 |
+
nifti_to_glb("prediction.nii.gz")
|
72 |
+
|
73 |
self.images = load_ct_to_numpy(path)
|
74 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
|
|
75 |
return "./prediction.obj"
|
76 |
+
|
77 |
def get_img_pred_pair(self, k):
|
78 |
k = int(k) - 1
|
79 |
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
|
80 |
+
out[k] = gr.AnnotatedImage.update(
|
81 |
+
self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
|
82 |
+
visible=True,
|
83 |
+
)
|
84 |
return out
|
85 |
|
86 |
def run(self):
|
87 |
+
css = """
|
88 |
#model-3d {
|
89 |
height: 512px;
|
90 |
}
|
|
|
92 |
height: 512px;
|
93 |
margin: auto;
|
94 |
}
|
95 |
+
#upload {
|
96 |
+
height: 120px;
|
97 |
+
}
|
98 |
"""
|
99 |
with gr.Blocks(css=css) as demo:
|
|
|
100 |
with gr.Row():
|
101 |
+
file_output = gr.File(file_count="single", elem_id="upload")
|
|
|
|
|
|
|
102 |
file_output.upload(self.upload_file, file_output, file_output)
|
103 |
|
104 |
+
model_selector = gr.Dropdown(
|
105 |
+
list(self.class_names.keys()),
|
106 |
+
label="Task",
|
107 |
+
info="Which task to perform - one model for"
|
108 |
+
"each brain tumor type and brain extraction",
|
109 |
+
multiselect=False,
|
110 |
+
size="sm",
|
111 |
+
)
|
112 |
+
model_selector.input(
|
113 |
+
fn=lambda x: self.set_class_name(x),
|
114 |
+
inputs=model_selector,
|
115 |
+
outputs=None,
|
116 |
+
)
|
117 |
+
|
118 |
+
run_btn = gr.Button("Run analysis").style(
|
119 |
+
full_width=False, size="lg"
|
120 |
+
)
|
121 |
run_btn.click(
|
122 |
+
fn=lambda x: self.process(x),
|
123 |
inputs=file_output,
|
124 |
+
outputs=self.volume_renderer,
|
125 |
)
|
126 |
+
|
127 |
with gr.Row():
|
128 |
gr.Examples(
|
129 |
+
examples=[
|
130 |
+
os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
|
131 |
+
],
|
132 |
inputs=file_output,
|
133 |
outputs=file_output,
|
134 |
fn=self.upload_file,
|
135 |
cache_examples=True,
|
136 |
)
|
137 |
+
|
138 |
with gr.Row():
|
139 |
with gr.Box():
|
140 |
+
with gr.Column():
|
141 |
+
image_boxes = []
|
142 |
+
for i in range(self.nb_slider_items):
|
143 |
+
visibility = True if i == 1 else False
|
144 |
+
t = gr.AnnotatedImage(
|
145 |
+
visible=visibility, elem_id="model-2d"
|
146 |
+
).style(
|
147 |
+
color_map={self.class_name: "#ffae00"},
|
148 |
+
height=512,
|
149 |
+
width=512,
|
150 |
+
)
|
151 |
+
image_boxes.append(t)
|
152 |
+
|
153 |
+
self.slider.input(
|
154 |
+
self.get_img_pred_pair, self.slider, image_boxes
|
155 |
+
)
|
156 |
+
|
157 |
+
self.slider.render()
|
158 |
+
|
159 |
with gr.Box():
|
160 |
self.volume_renderer.render()
|
|
|
|
|
|
|
161 |
|
162 |
+
# sharing app publicly -> share=True:
|
163 |
+
# https://gradio.app/sharing-your-app/
|
164 |
+
# inference times > 60 seconds -> need queue():
|
165 |
+
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
166 |
+
demo.queue().launch(
|
167 |
+
server_name="0.0.0.0", server_port=7860, share=self.share
|
168 |
+
)
|
demo/src/utils.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import nibabel as nib
|
2 |
import numpy as np
|
|
|
|
|
3 |
|
4 |
|
5 |
def load_ct_to_numpy(data_path):
|
@@ -36,3 +38,28 @@ def load_pred_volume_to_numpy(data_path):
|
|
36 |
|
37 |
print(data.shape)
|
38 |
return [data[..., i] for i in range(data.shape[-1])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import nibabel as nib
|
2 |
import numpy as np
|
3 |
+
from nibabel.processing import resample_to_output
|
4 |
+
from skimage.measure import marching_cubes
|
5 |
|
6 |
|
7 |
def load_ct_to_numpy(data_path):
|
|
|
38 |
|
39 |
print(data.shape)
|
40 |
return [data[..., i] for i in range(data.shape[-1])]
|
41 |
+
|
42 |
+
|
43 |
+
def nifti_to_glb(path, output="prediction.obj"):
|
44 |
+
# load NIFTI into numpy array
|
45 |
+
image = nib.load(path)
|
46 |
+
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
47 |
+
data = resampled.get_fdata().astype("uint8")
|
48 |
+
|
49 |
+
# extract surface
|
50 |
+
verts, faces, normals, values = marching_cubes(data, 0)
|
51 |
+
faces += 1
|
52 |
+
|
53 |
+
with open(output, "w") as thefile:
|
54 |
+
for item in verts:
|
55 |
+
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
56 |
+
|
57 |
+
for item in normals:
|
58 |
+
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
59 |
+
|
60 |
+
for item in faces:
|
61 |
+
thefile.write(
|
62 |
+
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
63 |
+
item[0], item[1], item[2]
|
64 |
+
)
|
65 |
+
)
|