Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,20 +8,20 @@ from typing import List
|
|
8 |
from diffusers.utils import numpy_to_pil
|
9 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
10 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
11 |
-
|
12 |
#import user_history
|
13 |
|
14 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
15 |
|
16 |
DESCRIPTION = "# Stable Cascade"
|
17 |
-
|
18 |
if not torch.cuda.is_available():
|
19 |
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
23 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
24 |
-
USE_TORCH_COMPILE =
|
25 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
26 |
PREVIEW_IMAGES = False #not working for now
|
27 |
|
@@ -39,8 +39,8 @@ if torch.cuda.is_available():
|
|
39 |
decoder_pipeline.to(device)
|
40 |
|
41 |
if USE_TORCH_COMPILE:
|
42 |
-
|
43 |
-
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="
|
44 |
|
45 |
if PREVIEW_IMAGES:
|
46 |
pass
|
@@ -66,7 +66,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
66 |
seed = random.randint(0, MAX_SEED)
|
67 |
return seed
|
68 |
|
69 |
-
|
70 |
def generate(
|
71 |
prompt: str,
|
72 |
negative_prompt: str = "",
|
@@ -82,8 +82,9 @@ def generate(
|
|
82 |
num_images_per_prompt: int = 2,
|
83 |
#profile: gr.OAuthProfile | None = None,
|
84 |
) -> PIL.Image.Image:
|
|
|
|
|
85 |
generator = torch.Generator().manual_seed(seed)
|
86 |
-
|
87 |
prior_output = prior_pipeline(
|
88 |
prompt=prompt,
|
89 |
height=height,
|
@@ -193,7 +194,7 @@ with gr.Blocks() as demo:
|
|
193 |
minimum=1,
|
194 |
maximum=2,
|
195 |
step=1,
|
196 |
-
value=
|
197 |
)
|
198 |
with gr.Row():
|
199 |
prior_guidance_scale = gr.Slider(
|
|
|
8 |
from diffusers.utils import numpy_to_pil
|
9 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
10 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
11 |
+
import spaces
|
12 |
#import user_history
|
13 |
|
14 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
15 |
|
16 |
DESCRIPTION = "# Stable Cascade"
|
17 |
+
DESCRIPTION += "\n<p style=\"text-align: center\"><a href='https://huggingface.co/stabilityai/stable-cascade' target='_blank'>Stable Casaade</a> is a new fast and efficient high resolution text-to-image architecture and model built on the Würstchen architecture</p>"
|
18 |
if not torch.cuda.is_available():
|
19 |
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
23 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
24 |
+
USE_TORCH_COMPILE = False
|
25 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
26 |
PREVIEW_IMAGES = False #not working for now
|
27 |
|
|
|
39 |
decoder_pipeline.to(device)
|
40 |
|
41 |
if USE_TORCH_COMPILE:
|
42 |
+
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
|
43 |
+
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
|
44 |
|
45 |
if PREVIEW_IMAGES:
|
46 |
pass
|
|
|
66 |
seed = random.randint(0, MAX_SEED)
|
67 |
return seed
|
68 |
|
69 |
+
@spaces.GPU
|
70 |
def generate(
|
71 |
prompt: str,
|
72 |
negative_prompt: str = "",
|
|
|
82 |
num_images_per_prompt: int = 2,
|
83 |
#profile: gr.OAuthProfile | None = None,
|
84 |
) -> PIL.Image.Image:
|
85 |
+
prior_pipeline.to("cuda")
|
86 |
+
decoder_pipeline.to("cuda")
|
87 |
generator = torch.Generator().manual_seed(seed)
|
|
|
88 |
prior_output = prior_pipeline(
|
89 |
prompt=prompt,
|
90 |
height=height,
|
|
|
194 |
minimum=1,
|
195 |
maximum=2,
|
196 |
step=1,
|
197 |
+
value=1,
|
198 |
)
|
199 |
with gr.Row():
|
200 |
prior_guidance_scale = gr.Slider(
|