mfarre's picture
mfarre HF staff
initial test
02abdab
raw
history blame
5.65 kB
import os
import json
import gradio as gr
import tempfile
from PIL import Image, ImageDraw, ImageFont
import cv2
from typing import Tuple, Optional
import torch
from pathlib import Path
import time
from video_highlight_detector import (
load_model,
BatchedVideoHighlightDetector,
get_video_duration_seconds
)
def load_examples(json_path: str) -> dict:
with open(json_path, 'r') as f:
return json.load(f)
def format_duration(seconds: int) -> str:
hours = seconds // 3600
minutes = (seconds % 3600) // 60
secs = seconds % 60
if hours > 0:
return f"{hours}:{minutes:02d}:{secs:02d}"
return f"{minutes}:{secs:02d}"
def add_watermark(video_path: str, output_path: str):
watermark_text = "πŸ€— SmolVLM2 Highlight"
command = f"""ffmpeg -i {video_path} -vf \
"drawtext=text='{watermark_text}':fontcolor=white:fontsize=24:box=1:[email protected]:\
boxborderw=5:x=w-tw-10:y=h-th-10" \
-codec:a copy {output_path}"""
os.system(command)
def process_video(
video_path: str,
progress = gr.Progress()
) -> Tuple[str, str, str, str]:
try:
duration = get_video_duration_seconds(video_path)
if duration > 1200: # 20 minutes
return None, None, None, "Video must be shorter than 20 minutes"
progress(0.1, desc="Loading model...")
model, processor = load_model()
detector = BatchedVideoHighlightDetector(model, processor)
progress(0.2, desc="Analyzing video content...")
video_description = detector.analyze_video_content(video_path)
progress(0.3, desc="Determining highlight types...")
highlight_types = detector.determine_highlights(video_description)
progress(0.4, desc="Detecting and extracting highlights...")
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
temp_output = tmp_file.name
detector.create_highlight_video(video_path, temp_output)
progress(0.9, desc="Adding watermark...")
output_path = temp_output.replace('.mp4', '_watermark.mp4')
add_watermark(temp_output, output_path)
os.unlink(temp_output)
video_description = video_description[:500] + "..." if len(video_description) > 500 else video_description
highlight_types = highlight_types[:500] + "..." if len(highlight_types) > 500 else highlight_types
return output_path, video_description, highlight_types, None
except Exception as e:
return None, None, None, f"Error processing video: {str(e)}"
def create_ui(examples_path: str):
examples_data = load_examples(examples_path)
with gr.Blocks() as app:
gr.Markdown("# Video Highlight Generator")
gr.Markdown("Upload a video (max 20 minutes) and get an automated highlight reel!")
with gr.Row():
gr.Markdown("## Example Results")
for example in examples_data["examples"]:
with gr.Row():
with gr.Column():
gr.Video(
example["original"]["url"],
label=f"Original ({format_duration(example['original']['duration_seconds'])})",
)
gr.Markdown(example["title"])
with gr.Column():
gr.Video(
example["highlights"]["url"],
label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})",
)
with gr.Accordion("Analysis", open=False):
gr.Markdown(example["analysis"]["video_description"])
gr.Markdown(example["analysis"]["highlight_types"])
gr.Markdown("## Try It Yourself!")
with gr.Row():
input_video = gr.Video(
label="Upload your video (max 20 minutes)",
interactive=True
)
with gr.Row(visible=False) as results_row:
with gr.Column():
video_description = gr.Markdown(label="Video Analysis")
with gr.Column():
highlight_types = gr.Markdown(label="Detected Highlights")
with gr.Row(visible=False) as output_row:
output_video = gr.Video(label="Highlight Video")
download_btn = gr.Button("Download Highlights")
error_msg = gr.Markdown(visible=False)
def on_upload(video):
results_row.visible = False
output_row.visible = False
error_msg.visible = False
if not video:
error_msg.visible = True
error_msg.value = "Please upload a video"
return None, None, None, error_msg
output_path, desc, highlights, err = process_video(video)
if err:
error_msg.visible = True
error_msg.value = err
return None, None, None, error_msg
results_row.visible = True
output_row.visible = True
return output_path, desc, highlights, ""
input_video.change(
on_upload,
inputs=[input_video],
outputs=[output_video, video_description, highlight_types, error_msg]
)
download_btn.click(
lambda x: x,
inputs=[output_video],
outputs=[output_video]
)
return app
if __name__ == "__main__":
app = create_ui("video_spec.json")
app.launch()