Clémentine
init
728a44a
raw
history blame
5.5 kB
import json
import os
from datetime import datetime, timezone
import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from src.assets.text_content import *
from src.elo_leaderboard.load_results import get_elo_plots, get_elo_results_dicts
from src.assets.css_html_js import custom_css, get_window_url_params # left in case you need them
from src.utils_display import EloEvalColumn, fields, styled_error, styled_warning, styled_message
from src.init import load_all_info_from_hub
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
HUMAN_EVAL_REPO = "HuggingFaceH4/scale-human-eval"
GPT_4_EVAL_REPO = "HuggingFaceH4/open_llm_leaderboard_oai_evals"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
ADD_PLOTS = False
EVAL_REQUESTS_PATH = "auto_evals/eval_requests"
api = HfApi()
def restart_space():
api.restart_space(
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN
)
human_eval_repo, gpt_4_eval_repo = load_all_info_from_hub(HUMAN_EVAL_REPO, GPT_4_EVAL_REPO)
ELO_COLS = [c.name for c in fields(EloEvalColumn)]
ELO_TYPES = [c.type for c in fields(EloEvalColumn)]
ELO_SORT_COL = EloEvalColumn.gpt4.name
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
def get_elo_leaderboard(df_instruct, df_code_instruct, tie_allowed=False):
if human_eval_repo:
print("Pulling human_eval_repo changes")
human_eval_repo.git_pull()
all_data = get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed)
dataframe = pd.DataFrame.from_records(all_data)
dataframe = dataframe.sort_values(by=ELO_SORT_COL, ascending=False)
dataframe = dataframe[ELO_COLS]
return dataframe
def get_elo_elements():
df_instruct = pd.read_json("human_evals/without_code.json")
df_code_instruct = pd.read_json("human_evals/with_code.json")
elo_leaderboard = get_elo_leaderboard(
df_instruct, df_code_instruct, tie_allowed=False
)
elo_leaderboard_with_tie_allowed = get_elo_leaderboard(
df_instruct, df_code_instruct, tie_allowed=True
)
plot_1, plot_2, plot_3, plot_4 = get_elo_plots(
df_instruct, df_code_instruct, tie_allowed=False
)
return (
elo_leaderboard,
elo_leaderboard_with_tie_allowed,
plot_1,
plot_2,
plot_3,
plot_4,
)
(
elo_leaderboard,
elo_leaderboard_with_tie_allowed,
plot_1,
plot_2,
plot_3,
plot_4,
) = get_elo_elements()
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
with gr.Row():
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(HUMAN_GPT_EVAL_TEXT, elem_classes="markdown-text")
with gr.Column(scale=1):
gr.Image(
"src/assets/scale-hf-logo.png", elem_id="scale-logo", show_label=False
)
gr.Markdown("## No tie allowed")
elo_leaderboard_table = gr.components.Dataframe(
value=elo_leaderboard,
headers=ELO_COLS,
datatype=ELO_TYPES,
max_rows=5,
)
gr.Markdown("## Tie allowed*")
elo_leaderboard_table_with_tie_allowed = gr.components.Dataframe(
value=elo_leaderboard_with_tie_allowed,
headers=ELO_COLS,
datatype=ELO_TYPES,
max_rows=5,
)
gr.Markdown(
"\* Results when the scores of 4 and 5 were treated as ties.",
elem_classes="markdown-text",
)
gr.Markdown(
"Let us know in [this discussion](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/65) which models we should add!",
elem_id="models-to-add-text",
)
if ADD_PLOTS:
with gr.Box():
visualization_title = gr.HTML(VISUALIZATION_TITLE)
with gr.Row():
with gr.Column():
gr.Markdown(f"#### Figure 1: {PLOT_1_TITLE}")
plot_1 = gr.Plot(plot_1, show_label=False)
with gr.Column():
gr.Markdown(f"#### Figure 2: {PLOT_2_TITLE}")
plot_2 = gr.Plot(plot_2, show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown(f"#### Figure 3: {PLOT_3_TITLE}")
plot_3 = gr.Plot(plot_3, show_label=False)
with gr.Column():
gr.Markdown(f"#### Figure 4: {PLOT_4_TITLE}")
plot_4 = gr.Plot(plot_4, show_label=False)
with gr.Row():
with gr.Column():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
with gr.Column():
with gr.Accordion("✨ CHANGELOG", open=False):
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.queue(concurrency_count=40).launch()