File size: 7,931 Bytes
43ec909
2d03fbb
 
bb5da6f
2d03fbb
43ec909
3905983
b12fedc
a8d12ee
 
 
 
 
 
974f318
a8d12ee
 
 
 
 
b12fedc
a8d12ee
 
 
 
 
b12fedc
a8d12ee
3905983
462133f
 
0764fdf
3905983
a8d12ee
0764fdf
 
3905983
 
 
 
 
 
 
0764fdf
 
 
3905983
 
 
 
 
 
 
 
 
0764fdf
 
 
 
 
 
 
 
 
 
 
 
 
3905983
 
0764fdf
3905983
 
 
 
0764fdf
 
 
75aa635
3905983
0764fdf
 
 
 
3905983
0764fdf
3905983
0764fdf
 
 
 
 
 
 
3905983
0764fdf
3905983
 
0764fdf
 
 
 
 
 
3905983
 
43ec909
3905983
 
 
 
 
 
0764fdf
3905983
aef3a19
 
 
0764fdf
43ec909
74b7f00
0764fdf
74b7f00
43ec909
0764fdf
74b7f00
3905983
0764fdf
 
43ec909
0764fdf
 
 
 
 
 
 
462133f
 
 
 
 
0764fdf
 
 
 
 
 
3905983
75aa635
a8d12ee
3905983
0764fdf
462133f
3905983
0764fdf
3905983
0764fdf
 
3905983
0764fdf
3905983
 
 
a8d12ee
 
 
3905983
 
 
 
 
a8d12ee
 
 
3905983
 
 
aef3a19
3905983
 
0764fdf
3905983
b12fedc
3905983
0764fdf
 
 
 
 
 
 
 
3905983
0764fdf
 
 
 
 
 
 
a8d12ee
0764fdf
 
 
 
 
a8d12ee
0764fdf
 
 
 
 
3905983
a8d12ee
 
0764fdf
 
 
 
 
 
 
a8d12ee
 
 
0764fdf
 
 
a8d12ee
0764fdf
3905983
 
0764fdf
3905983
 
 
 
 
 
 
 
 
 
 
 
0764fdf
 
2d03fbb
3905983
43ec909
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import { getColor } from "./colors.mjs"
import { parse } from "papaparse"
import _ from "lodash"
import Plotly from "plotly.js-basic-dist-min"

const DATA_FOLDER = "assets/data/clustering";

const BASE_SIZE = 5.5;
// x0, x1, y0, y1
const DEFAULT_XAXIS = {
    showticklabels: false,
    showgrid: false,
    zeroline: false,
    title: {
        text: "<a href='https://github.com/huggingface/text-clustering' target='_blank' style='color: inherit;'>The 🍷 FineWeb dataset, clustered and annotated with educational score labels</a>",
        font: {
            size: 16,
            style: "italic",
        },
    },
    range: [5, 15.6461]
}
const DEFAULT_YAXIS = {
    showticklabels: false,
    showgrid: false,
    zeroline: false,
    range: [0, 8.5],
}

const getLabelHoverFormat = (row, labelIDToName) => {
    return `<b>Text</b>: ${row.text}<br><b>Label</b>: ${labelIDToName[row.label] ?? "Unknown"}<br><b>Edu label</b>: ${row.eduScore}`;
};


// Number of annotations to display
const K = 15;

function createLabelOrderMapping(labels) {
    const labelCounts = labels.reduce((acc, label) => {
        acc[label] = (acc[label] || 0) + 1;
        return acc;
    }, {});

    const sortedLabels = Object.entries(labelCounts)
        .sort((a, b) => b[1] - a[1])
        .map((entry) => entry[0]);

    const labelOrder = {};
    sortedLabels.forEach((label, index) => {
        labelOrder[label] = index;
    });
    return labelOrder;
}

const parseAnnotations = async (file) => {
    return (await readCSV(file))
        .filter((cluster_summary) => {
            return parseInt(cluster_summary.cluster_id) != -1;
        })
        .map((cluster_summary) => {
            return {
                x: parseFloat(cluster_summary.cluster_position_x),
                y: parseFloat(cluster_summary.cluster_position_y),
                label: parseInt(cluster_summary.cluster_id),
                text: cluster_summary.cluster_summaries,
            };
        });
};

const addStylingToAnnotations = (annotations) => {
    return annotations.map((annotation) => {
        return {
            showarrow: false,
            font: {
                size: 14,
                color: "black",
                weight: "bold",
            },
            bgcolor: getColor(annotation.label, 0.6),
            borderpad: 2, // Add padding around the text
            ...annotation,
        };
    });
};

const getRelevantAnnotations = (annotations, x0, x1, y0, y1, k = K) => {
    const relevant_annotations = annotations.filter((annotation) => {
        return (
            annotation.x >= x0 &&
            annotation.x <= x1 &&
            annotation.y >= y0 &&
            annotation.y <= y1
        );
    });
    return relevant_annotations.sort((a, b) => a.ord - b.ord).slice(0, k);
};

const getMinMaxTracesArea = (traces) => {
    const x0 = Math.min(...traces.map((trace) => trace.x));
    const x1 = Math.max(...traces.map((trace) => trace.x));
    const y0 = Math.min(...traces.map((trace) => trace.y));
    const y1 = Math.max(...traces.map((trace) => trace.y));
    return { x0, x1, y0, y1 };
};

const readData = async () => {
    return (await readCSV(`${DATA_FOLDER}/data.csv`)).map((row) => ({
        x: parseFloat(row.X),
        y: parseFloat(row.Y),
        eduScore: parseFloat(row.edu_labels),
        label: parseInt(row.cluster_labels),
        text: row.content_display,
    }));
};

// The cluster is pretty big, so takes time to donwload
// In the meantime we put there a placeholder image
const destroyPlaceholderImage = (parent) => {
    const img = parent.querySelector("img");
    console.log(img);
    img.remove();
};

export async function plotClusters() {
    const parent = document.getElementById("clusters-plot");
    // We do a little trolling on users and pretend that we already donwloaded the data by simply showing uniteractive image :)
    const data = await readData();
    const labelOrder = createLabelOrderMapping(data.map((row) => row.label));
    const annotations = addStylingToAnnotations(
        await parseAnnotations(`${DATA_FOLDER}/info.csv`)
    ).map((annot) => {
        return {
            ...annot,
            ord: labelOrder[annot.label],
        };
    });

    const labelIDToName = annotations.reduce((acc, annotation) => {
        acc[annotation.label] = annotation.text;
        return acc;
    }, {});

    const traces = [
        {
            type: "scatter",
            mode: "markers",
            x: data.map((row) => row.x),
            y: data.map((row) => row.y),
            marker: {
                color: data.map((row) => getColor(row.label, 0.4)),
                size: BASE_SIZE,
            },
            hoverinfo: "text",
            hovertext: data.map((row) => getLabelHoverFormat(row, labelIDToName)),
            hoverlabel: {
                bgcolor: "white",
            },
        },
    ];

    const { x0, x1, y0, y1 } = getMinMaxTracesArea(data);
    const layout = {
        height: 550,
        width: parent.clientWidth,
        xaxis: DEFAULT_XAXIS,
        yaxis: DEFAULT_YAXIS,
        annotations: getRelevantAnnotations(annotations, DEFAULT_XAXIS.range[0], DEFAULT_XAXIS.range[1], DEFAULT_YAXIS.range[0], DEFAULT_YAXIS.range[1]),
        font: {
            family: "apple-system, Arial, sans-serif",
        },
        margin: {
            t: 0,
            b: 50,
            l: 0,
            r: 0,
        },
    };

    destroyPlaceholderImage(parent);
    Plotly.newPlot(parent, traces, layout);

    parent.on("plotly_relayout", (eventdata) => {
        // First option zoomed in
        console.log(eventdata)
        if (eventdata["xaxis.range[0]"]) {
            const [newx0, newx1] = [
                eventdata["xaxis.range[0]"],
                eventdata["xaxis.range[1]"],
            ];
            const [newy0, newy1] = [
                eventdata["yaxis.range[0]"],
                eventdata["yaxis.range[1]"],
            ];
            // Idk maybe we can even recompute the ordering, but I think it's fine to use the global one
            const relevant_annotations = getRelevantAnnotations(
                annotations,
                newx0,
                newx1,
                newy0,
                newy1
            );
            console.log(x0, x1, y0, y1);
            // 1.8 otherwise it's too big
            const zoomLevel =
                Math.min(
                    (x1 - x0) / (newx1 - newx0),
                    (y1 - y0) / (newy1 - newy0)
                ) / 1.2;
            Plotly.update(
                parent,
                { "marker.size": BASE_SIZE * zoomLevel },
                { annotations: relevant_annotations },
            );
        }
        // Zoom reset to full outzoomed or to base range
        else if (eventdata["xaxis.autorange"] || eventdata["xaxis.range"]) {
            const relevant_annotations = getRelevantAnnotations(
                annotations,
                x0,
                x1,
                y0,
                y1
            );
            // We wan to always fully zoomed out
            const xaxis = _.merge({}, DEFAULT_XAXIS, { range: [x0, x1] });
            const yaxis = _.merge({}, DEFAULT_YAXIS, { range: [y0, y1] });
            Plotly.update(
                parent,
                { "marker.size": BASE_SIZE },
                { annotations: relevant_annotations, xaxis, yaxis }
            );
        }
    });

    window.addEventListener("resize", () => {
        // If the window size is smaller than 768, we don't care as it's not shown
        if (window.innerWidth < 768) {
            return;
        }
        Plotly.relayout(parent, {
            width: parent.offsetWidth,
        });
    });
}

const readCSV = async (file) => {
    const data = await fetch(file);
    const text = await data.text();
    const csv = parse(text, { header: true, skipEmptyLines: true });
    return csv.data;
};