Himanshu2003 commited on
Commit
c593beb
·
verified ·
1 Parent(s): cdd9bd1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import numpy as np
4
+ import cv2
5
+ from tensorflow.keras.models import load_model
6
+ import os
7
+ # Ensure the 'upload' directory exists
8
+ upload_folder = 'uploads'
9
+ if not os.path.exists(upload_folder):
10
+ os.makedirs(upload_folder)
11
+
12
+ # Load the pre-trained model
13
+ model = load_model("gender_detector.keras")
14
+
15
+ def get_result(img_path):
16
+ img = cv2.imread(img_path)
17
+ img_resize = cv2.resize(img, (150, 150))
18
+ img_resize = np.array(img_resize, dtype=np.float32)
19
+ img_resize /= 255.0
20
+ img_input = img_resize.reshape(1, 150, 150, 3)
21
+ prediction = model.predict(img_input)
22
+
23
+ if prediction[0][0] < 0.5:
24
+ return "It's a Dog 🐶"
25
+ else:
26
+ return "It's a Cat 🐱"
27
+
28
+
29
+ st.title('Is it a Cat or Dog 🐶🐱')
30
+ uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
31
+ if uploaded_image is not None:
32
+ image = Image.open(uploaded_image)
33
+
34
+ image_path = os.path.join(upload_folder, uploaded_image.name)
35
+ image.save(image_path)
36
+ output = get_result(image_path)
37
+
38
+ st.write(output)
39
+ st.image(image, use_container_width=True)