Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
+
import os
|
7 |
+
# Ensure the 'upload' directory exists
|
8 |
+
upload_folder = 'uploads'
|
9 |
+
if not os.path.exists(upload_folder):
|
10 |
+
os.makedirs(upload_folder)
|
11 |
+
|
12 |
+
# Load the pre-trained model
|
13 |
+
model = load_model("gender_detector.keras")
|
14 |
+
|
15 |
+
def get_result(img_path):
|
16 |
+
img = cv2.imread(img_path)
|
17 |
+
img_resize = cv2.resize(img, (150, 150))
|
18 |
+
img_resize = np.array(img_resize, dtype=np.float32)
|
19 |
+
img_resize /= 255.0
|
20 |
+
img_input = img_resize.reshape(1, 150, 150, 3)
|
21 |
+
prediction = model.predict(img_input)
|
22 |
+
|
23 |
+
if prediction[0][0] < 0.5:
|
24 |
+
return "It's a Dog 🐶"
|
25 |
+
else:
|
26 |
+
return "It's a Cat 🐱"
|
27 |
+
|
28 |
+
|
29 |
+
st.title('Is it a Cat or Dog 🐶🐱')
|
30 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
31 |
+
if uploaded_image is not None:
|
32 |
+
image = Image.open(uploaded_image)
|
33 |
+
|
34 |
+
image_path = os.path.join(upload_folder, uploaded_image.name)
|
35 |
+
image.save(image_path)
|
36 |
+
output = get_result(image_path)
|
37 |
+
|
38 |
+
st.write(output)
|
39 |
+
st.image(image, use_container_width=True)
|