APISR / train_code /train_esrgan.py
HikariDawn's picture
feat: initial push
561c629
# -*- coding: utf-8 -*-
import sys
import os
import torch
# import important files
root_path = os.path.abspath('.')
sys.path.append(root_path)
from architecture.rrdb import RRDBNet
from architecture.discriminator import UNetDiscriminatorSN
from train_code.train_master import train_master
class train_esrgan(train_master):
def __init__(self, options, args) -> None:
super().__init__(options, args, "esrgan", True) # Pass a model name unique code
def loss_init(self):
# prepare pixel loss (Generator)
self.pixel_loss_load()
# prepare perceptual loss
self.GAN_loss_load()
def call_model(self):
# Generator
self.generator = RRDBNet(3, 3, scale=self.options['scale'], num_block=self.options['ESR_blocks_num']).cuda()
# self.generator = torch.compile(self.generator).cuda()
self.discriminator = UNetDiscriminatorSN(3).cuda()
# self.discriminator = torch.compile(self.discriminator).cuda()
self.generator.train(); self.discriminator.train()
def run(self):
self.master_run()
def calculate_loss(self, gen_hr, imgs_hr):
###################### We have 3 losses on Generator ######################
# Generator Pixel loss (l1 loss): generated vs. GT
l_g_pix = self.cri_pix(gen_hr, imgs_hr)
self.generator_loss += l_g_pix
self.weight_store["pixel_loss"] = l_g_pix
# Generator perceptual loss: generated vs. perceptual
l_g_percep_danbooru = self.cri_danbooru_perceptual(gen_hr, imgs_hr)
l_g_percep_vgg = self.cri_vgg_perceptual(gen_hr, imgs_hr)
l_g_percep = l_g_percep_danbooru + l_g_percep_vgg
self.generator_loss += l_g_percep
self.weight_store["perceptual_loss"] = l_g_percep
# Generator GAN loss label correction
fake_g_preds = self.discriminator(gen_hr)
l_g_gan = self.cri_gan(fake_g_preds, True, is_disc=False) # loss_weight (self.gan_loss_weight) is included
self.generator_loss += l_g_gan
self.weight_store["gan_loss"] = l_g_gan # Already with gan_loss_weight (0.2/1)
def tensorboard_report(self, iteration):
self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration)
self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration)
self.writer.add_scalar('Loss/train-Perceptual_Loss-Iteration', self.weight_store["perceptual_loss"], iteration)
self.writer.add_scalar('Loss/train-Discriminator_Loss-Iteration', self.weight_store["gan_loss"], iteration)