Spaces:
Running
on
T4
Running
on
T4
import torch, sys, os, random | |
import torch.nn.functional as F | |
import numpy as np | |
import cv2 | |
from multiprocessing import Process, Queue | |
from PIL import Image | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
# Import files from the local folder | |
from opt import opt | |
from degradation.ESR.utils import tensor2np, np2tensor | |
class WEBP(): | |
def __init__(self) -> None: | |
# Choose an image compression degradation | |
pass | |
def compress_and_store(self, np_frames, store_path, idx): | |
''' Compress and Store the whole batch as WebP (~ VP8) | |
Args: | |
np_frames (numpy): The numpy format of the data (Shape:?) | |
store_path (str): The store path | |
Return: | |
None | |
''' | |
single_frame = np_frames | |
# Choose the quality | |
quality = random.randint(*opt['webp_quality_range2']) | |
method = random.randint(*opt['webp_encode_speed2']) | |
# Transform to PIL and then compress | |
PIL_image = Image.fromarray(np.uint8(single_frame[...,::-1])).convert('RGB') | |
PIL_image.save(store_path, 'webp', quality=quality, method=method) | |
def compress_tensor(tensor_frames, idx = 0): | |
''' Compress tensor input to WEBP and then return it | |
Args: | |
tensor_frame (tensor): Tensor inputs | |
Returns: | |
result (tensor): Tensor outputs (same shape as input) | |
''' | |
single_frame = tensor2np(tensor_frames) | |
# Choose the quality | |
quality = random.randint(*opt['webp_quality_range1']) | |
method = random.randint(*opt['webp_encode_speed1']) | |
# Transform to PIL and then compress | |
PIL_image = Image.fromarray(np.uint8(single_frame[...,::-1])).convert('RGB') | |
store_path = os.path.join("tmp", "temp_"+str(idx)+".webp") | |
PIL_image.save(store_path, 'webp', quality=quality, method=method) | |
# Read back | |
decimg = cv2.imread(store_path) | |
result = np2tensor(decimg) | |
os.remove(store_path) | |
return result |