Spaces:
Running
on
T4
Running
on
T4
import os, sys | |
import cv2 | |
import gradio as gr | |
import torch | |
import numpy as np | |
from torchvision.utils import save_image | |
# Import files from the local folder | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
from test_code.inference import super_resolve_img | |
from test_code.test_utils import load_grl, load_rrdb | |
def auto_download_if_needed(weight_path): | |
if os.path.exists(weight_path): | |
return | |
if not os.path.exists("pretrained"): | |
os.makedirs("pretrained") | |
if weight_path == "pretrained/4x_APISR_GRL_GAN_generator.pth": | |
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/4x_APISR_GRL_GAN_generator.pth") | |
os.system("mv 4x_APISR_GRL_GAN_generator.pth pretrained") | |
if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth": | |
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth") | |
os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained") | |
def inference(img_path, model_name): | |
try: | |
weight_dtype = torch.float32 | |
# Load the model | |
if model_name == "4xGRL": | |
weight_path = "pretrained/4x_APISR_GRL_GAN_generator.pth" | |
auto_download_if_needed(weight_path) | |
generator = load_grl(weight_path, scale=4) # Directly use default way now | |
elif model_name == "2xRRDB": | |
weight_path = "pretrained/2x_APISR_RRDB_GAN_generator.pth" | |
auto_download_if_needed(weight_path) | |
generator = load_rrdb(weight_path, scale=2) # Directly use default way now | |
else: | |
raise gr.Error(error) | |
generator = generator.to(dtype=weight_dtype) | |
# In default, we will automatically use crop to match 4x size | |
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, crop_for_4x=True) | |
save_image(super_resolved_img, "SR_result.png") | |
outputs = cv2.imread("SR_result.png") | |
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR) | |
return outputs | |
except Exception as error: | |
raise gr.Error(f"global exception: {error}") | |
if __name__ == '__main__': | |
MARKDOWN = \ | |
""" | |
## APISR: Anime Production Inspired Real-World Anime Super-Resolution (CVPR 2024) | |
[GitHub](https://github.com/Kiteretsu77/APISR) | [Paper](https://arxiv.org/abs/2403.01598) | |
If APISR is helpful for you, please help star the GitHub Repo. Thanks! | |
""" | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown(MARKDOWN) | |
with gr.Row(elem_classes=["container"]): | |
with gr.Column(scale=2): | |
input_image = gr.Image(type="filepath", label="Input") | |
model_name = gr.Dropdown( | |
[ | |
"2xRRDB", | |
"4xGRL" | |
], | |
type="value", | |
value="4xGRL", | |
label="model", | |
) | |
run_btn = gr.Button(value="Submit") | |
with gr.Column(scale=3): | |
output_image = gr.Image(type="numpy", label="Output image") | |
with gr.Row(elem_classes=["container"]): | |
gr.Examples( | |
[ | |
["__assets__/lr_inputs/image-00277.png"], | |
["__assets__/lr_inputs/image-00542.png"], | |
["__assets__/lr_inputs/41.png"], | |
["__assets__/lr_inputs/f91.jpg"], | |
["__assets__/lr_inputs/image-00440.png"], | |
["__assets__/lr_inputs/image-00164.png"], | |
["__assets__/lr_inputs/img_eva.jpeg"], | |
], | |
[input_image], | |
) | |
run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image]) | |
block.launch() |