HighCWu commited on
Commit
e6bfa26
·
1 Parent(s): 33254bb

update tf version

Browse files
Files changed (3) hide show
  1. InstanceNorm.py +4 -3
  2. models.py +6 -6
  3. requirements.txt +6 -6
InstanceNorm.py CHANGED
@@ -1,7 +1,8 @@
1
- from keras.engine import Layer, InputSpec
 
2
  from keras import initializers, regularizers, constraints
3
  from keras import backend as K
4
- from keras.utils.generic_utils import get_custom_objects
5
 
6
  import tensorflow as tf
7
 
@@ -110,7 +111,7 @@ class InstanceNormalization(Layer):
110
 
111
  del reduction_axes[0]
112
 
113
- mean, var = tf.nn.moments(inputs, reduction_axes, keep_dims=True)
114
  stddev = tf.sqrt(var) + self.epsilon
115
  normed = (inputs - mean) / stddev
116
 
 
1
+ from keras.engine.base_layer import Layer
2
+ from keras.engine.input_spec import InputSpec
3
  from keras import initializers, regularizers, constraints
4
  from keras import backend as K
5
+ from keras.saving.object_registration import get_custom_objects
6
 
7
  import tensorflow as tf
8
 
 
111
 
112
  del reduction_axes[0]
113
 
114
+ mean, var = tf.nn.moments(inputs, reduction_axes, keepdims=True)
115
  stddev = tf.sqrt(var) + self.epsilon
116
  normed = (inputs - mean) / stddev
117
 
models.py CHANGED
@@ -1,4 +1,4 @@
1
- from keras.layers import Conv2D, Activation, Input, Concatenate, LeakyReLU, Lambda, AveragePooling2D, UpSampling2D, Convolution2D, BatchNormalization, Deconvolution2D, Add
2
  from keras.models import Model
3
  from InstanceNorm import InstanceNormalization
4
 
@@ -31,13 +31,13 @@ def make_standard_UNET(channels,outs):
31
  bnc7 = BatchNormalization(axis=3, name='bnc7')
32
  bnc8 = BatchNormalization(axis=3, name='bnc8')
33
 
34
- dc8 = Deconvolution2D(filters=512, kernel_size=4, strides=2, padding='same', name='dc8_')
35
  dc7 = Convolution2D(filters=256, kernel_size=3, strides=1, padding='same', name='dc7')
36
- dc6 = Deconvolution2D(filters=256, kernel_size=4, strides=2, padding='same', name='dc6_')
37
  dc5 = Convolution2D(filters=128, kernel_size=3, strides=1, padding='same', name='dc5')
38
- dc4 = Deconvolution2D(filters=128, kernel_size=4, strides=2, padding='same', name='dc4_')
39
  dc3 = Convolution2D(filters=64, kernel_size=3, strides=1, padding='same', name='dc3')
40
- dc2 = Deconvolution2D(filters=64, kernel_size=4, strides=2, padding='same', name='dc2_')
41
  dc1 = Convolution2D(filters=32, kernel_size=3, strides=1, padding='same', name='dc1')
42
  dc0 = Convolution2D(filters=outs, kernel_size=3, strides=1, padding='same', name='dc0')
43
 
@@ -212,7 +212,7 @@ def make_unet512():
212
  return Conv2D(filters=filters, strides=strides, kernel_size=kernel_size, padding='same')(x)
213
 
214
  def donv(x, filters, strides=(2, 2), kernel_size=(4, 4)):
215
- return Deconvolution2D(filters=filters, strides=strides, kernel_size=kernel_size, padding='same')(x)
216
 
217
  def relu(x):
218
  return Activation('relu')(x)
 
1
+ from keras.layers import Conv2D, Activation, Input, Concatenate, LeakyReLU, Lambda, AveragePooling2D, UpSampling2D, Convolution2D, BatchNormalization, Conv2DTranspose, Add
2
  from keras.models import Model
3
  from InstanceNorm import InstanceNormalization
4
 
 
31
  bnc7 = BatchNormalization(axis=3, name='bnc7')
32
  bnc8 = BatchNormalization(axis=3, name='bnc8')
33
 
34
+ dc8 = Conv2DTranspose(filters=512, kernel_size=4, strides=2, padding='same', name='dc8_')
35
  dc7 = Convolution2D(filters=256, kernel_size=3, strides=1, padding='same', name='dc7')
36
+ dc6 = Conv2DTranspose(filters=256, kernel_size=4, strides=2, padding='same', name='dc6_')
37
  dc5 = Convolution2D(filters=128, kernel_size=3, strides=1, padding='same', name='dc5')
38
+ dc4 = Conv2DTranspose(filters=128, kernel_size=4, strides=2, padding='same', name='dc4_')
39
  dc3 = Convolution2D(filters=64, kernel_size=3, strides=1, padding='same', name='dc3')
40
+ dc2 = Conv2DTranspose(filters=64, kernel_size=4, strides=2, padding='same', name='dc2_')
41
  dc1 = Convolution2D(filters=32, kernel_size=3, strides=1, padding='same', name='dc1')
42
  dc0 = Convolution2D(filters=outs, kernel_size=3, strides=1, padding='same', name='dc0')
43
 
 
212
  return Conv2D(filters=filters, strides=strides, kernel_size=kernel_size, padding='same')(x)
213
 
214
  def donv(x, filters, strides=(2, 2), kernel_size=(4, 4)):
215
+ return Conv2DTranspose(filters=filters, strides=strides, kernel_size=kernel_size, padding='same')(x)
216
 
217
  def relu(x):
218
  return Activation('relu')(x)
requirements.txt CHANGED
@@ -1,11 +1,11 @@
1
  opencv-contrib-python>=4.1.0.25
2
- tensorflow_gpu==1.14.0
3
  gradio>=3.20.1
4
- keras==2.2.5
5
- scikit-learn==0.23.1
6
- scikit-image==0.14.5
7
- llvmlite==0.36.0
8
- numba==0.53.1
9
  tqdm
10
  paste
11
 
 
1
  opencv-contrib-python>=4.1.0.25
2
+ tensorflow>=2.12.0
3
  gradio>=3.20.1
4
+ keras>=2.2.5
5
+ scikit-learn>=0.23.1
6
+ scikit-image>=0.14.5
7
+ llvmlite>=0.36.0
8
+ numba>=0.53.1
9
  tqdm
10
  paste
11