File size: 13,836 Bytes
e9d4572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import numpy as np
import cv2
from skimage.measure import block_reduce
from linefiller.trappedball_fill import *
from linefiller.thinning import *
from linefiller.third_party import *


def from_png_to_jpg(map):
    if map.shape[2] ==3:
        return map
    color = map[:, :, 0:3].astype(np.float) / 255.0
    alpha = map[:, :, 3:4].astype(np.float) / 255.0
    reversed_color = 1 - color
    final_color = (255.0 - reversed_color * alpha * 255.0).clip(0,255).astype(np.uint8)
    return final_color


def mk_resize(x, k):
    if x.shape[0] < x.shape[1]:
        s0 = k
        s1 = int(x.shape[1] * (k / x.shape[0]))
        s1 = s1 - s1 % 128
        _s0 = 32 * s0
        _s1 = int(x.shape[1] * (_s0 / x.shape[0]))
        _s1 = (_s1 + 64) - (_s1 + 64) % 128
    else:
        s1 = k
        s0 = int(x.shape[0] * (k / x.shape[1]))
        s0 = s0 - s0 % 128
        _s1 = 32 * s1
        _s0 = int(x.shape[0] * (_s1 / x.shape[1]))
        _s0 = (_s0 + 64) - (_s0 + 64) % 128
    new_min = min(_s1, _s0)
    raw_min = min(x.shape[0], x.shape[1])
    if new_min < raw_min:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (_s1, _s0), interpolation=interpolation)
    return y


def k_resize(x, k):
    if x.shape[0] < x.shape[1]:
        s0 = k
        s1 = int(x.shape[1] * (k / x.shape[0]))
        s1 = s1 - s1 % 64
        _s0 = 16 * s0
        _s1 = int(x.shape[1] * (_s0 / x.shape[0]))
        _s1 = (_s1 + 32) - (_s1 + 32) % 64
    else:
        s1 = k
        s0 = int(x.shape[0] * (k / x.shape[1]))
        s0 = s0 - s0 % 64
        _s1 = 16 * s1
        _s0 = int(x.shape[0] * (_s1 / x.shape[1]))
        _s0 = (_s0 + 32) - (_s0 + 32) % 64
    new_min = min(_s1, _s0)
    raw_min = min(x.shape[0], x.shape[1])
    if new_min < raw_min:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (_s1, _s0), interpolation=interpolation)
    return y


def sk_resize(x, k):
    if x.shape[0] < x.shape[1]:
        s0 = k
        s1 = int(x.shape[1] * (k / x.shape[0]))
        s1 = s1 - s1 % 16
        _s0 = 4 * s0
        _s1 = int(x.shape[1] * (_s0 / x.shape[0]))
        _s1 = (_s1 + 8) - (_s1 + 8) % 16
    else:
        s1 = k
        s0 = int(x.shape[0] * (k / x.shape[1]))
        s0 = s0 - s0 % 16
        _s1 = 4 * s1
        _s0 = int(x.shape[0] * (_s1 / x.shape[1]))
        _s0 = (_s0 + 8) - (_s0 + 8) % 16
    new_min = min(_s1, _s0)
    raw_min = min(x.shape[0], x.shape[1])
    if new_min < raw_min:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (_s1, _s0), interpolation=interpolation)
    return y


def d_resize(x, d, fac=1.0):
    new_min = min(int(d[1] * fac), int(d[0] * fac))
    raw_min = min(x.shape[0], x.shape[1])
    if new_min < raw_min:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (int(d[1] * fac), int(d[0] * fac)), interpolation=interpolation)
    return y


def n_resize(x, d):
    y = cv2.resize(x, (d[1], d[0]), interpolation=cv2.INTER_NEAREST)
    return y


def s_resize(x, s):
    if x.shape[0] < x.shape[1]:
        s0 = x.shape[0]
        s1 = int(float(s0) / float(s[0]) * float(s[1]))
    else:
        s1 = x.shape[1]
        s0 = int(float(s1) / float(s[1]) * float(s[0]))
    new_max = max(s1, s0)
    raw_max = max(x.shape[0], x.shape[1])
    if new_max < raw_max:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (s1, s0), interpolation=interpolation)
    return y


def min_resize(x, m):
    if x.shape[0] < x.shape[1]:
        s0 = m
        s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
    else:
        s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
        s1 = m
    new_max = min(s1, s0)
    raw_max = min(x.shape[0], x.shape[1])
    if new_max < raw_max:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (s1, s0), interpolation=interpolation)
    return y


def max_resize(x, m):
    if x.shape[0] > x.shape[1]:
        s0 = m
        s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
    else:
        s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
        s1 = m
    new_max = max(s1, s0)
    raw_max = max(x.shape[0], x.shape[1])
    if new_max < raw_max:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (s1, s0), interpolation=interpolation)
    return y


def s_enhance(x, k=2.0):
    p = cv2.cvtColor(x, cv2.COLOR_RGB2HSV).astype(np.float)
    p[:, :, 1] *= k
    p = p.clip(0, 255).astype(np.uint8)
    return cv2.cvtColor(p, cv2.COLOR_HSV2RGB).clip(0, 255)


def sss_enhance(x, k=2.0):
    p = cv2.cvtColor(x, cv2.COLOR_RGB2HSV).astype(np.float)
    p[:, :, 1] *= k
    p[:, :, 2] = 255
    p = p.clip(0, 255).astype(np.uint8)
    return cv2.cvtColor(p, cv2.COLOR_HSV2RGB).clip(0, 255)


def ini_hint(x):
    r = np.zeros(shape=(x.shape[0], x.shape[1], 4), dtype=np.uint8)
    return r


def opreate_gird_hint(gird, points, type, length):
    h = gird.shape[0]
    w = gird.shape[1]
    for point in points:
        x, y, r, g, b, t = point
        if t == type:
            x = int(x * w)
            y = int(y * h)
            l_ = max(0, x - length)
            b_ = max(0, y - length)
            r_ = min(w, x + length + 1)
            t_ = min(h, y + length + 1)
            gird[b_:t_, l_:r_, 2] = 1 - r / 255.0
            gird[b_:t_, l_:r_, 1] = 1 - g / 255.0
            gird[b_:t_, l_:r_, 0] = 1 - b / 255.0
            gird[b_:t_, l_:r_, 3] = 1
    return gird


def opreate_normal_hint(gird, points, length, skip_sp):
    h = gird.shape[0]
    w = gird.shape[1]
    for point in points:
        x, y, r, g, b = point
        x = int(x * w)
        y = int(y * h)
        l_ = max(0, x - length)
        b_ = max(0, y - length)
        r_ = min(w, x + length + 1)
        t_ = min(h, y + length + 1)
        if skip_sp:
            if r == 1 and g == 233 and b == 0:
                continue
            elif r == 0 and g == 233 and b == 1:
                continue
            else:
                gird[b_:t_, l_:r_, 2] = r
                gird[b_:t_, l_:r_, 1] = g
                gird[b_:t_, l_:r_, 0] = b
                gird[b_:t_, l_:r_, 3] = 255.0
        else:
            if r == 1 and g == 233 and b == 0:
                gird[b_:t_, l_:r_, 2] = r
                gird[b_:t_, l_:r_, 1] = g
                gird[b_:t_, l_:r_, 0] = b
                gird[b_:t_, l_:r_, 3] = 255.0
            elif r == 0 and g == 233 and b == 1:
                gird[b_:t_, l_:r_, 2] = r
                gird[b_:t_, l_:r_, 1] = g
                gird[b_:t_, l_:r_, 0] = b
                gird[b_:t_, l_:r_, 3] = 255.0
            else:
                continue
    return gird


def opreate_non_paramic_hints(gird, points, type):
    points_r = []
    colors_r = []
    h = gird.shape[0]
    w = gird.shape[1]
    for point in points:
        x, y, r, g, b, t = point
        if t in type:
            x = int(x * w)
            y = int(y * h)
            points_r.append([y, x])
            colors_r.append([b, g, r])
    return points_r, colors_r


def go_cvline(img):
    x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
    absX = cv2.convertScaleAbs(x)
    absY = cv2.convertScaleAbs(y)
    r = 255 - cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
    return np.tile(np.min(r, axis=2, keepdims=True).clip(0, 255).astype(np.uint8), [1, 1, 3])


def go_passline(img):
    o = img.astype(np.float32)
    b = cv2.GaussianBlur(img, (7, 7), 0).astype(np.float32)
    r = np.max(b - o, axis=2, keepdims=True)
    r /= np.max(cv2.resize(r.clip(0, 255).astype(np.uint8), (64, 64), cv2.INTER_AREA))
    r = (1 - r).clip(0, 1)
    return np.tile((r * 255.0).clip(0, 255).astype(np.uint8), [1, 1, 3])


def min_k_down(x, k):
    y = 255 - x.astype(np.float32)
    y = block_reduce(y, (k, k), np.max)
    y = 255 - y
    return y.clip(0, 255).astype(np.uint8)


def min_k_down_c(x, k):
    y = 255 - x.astype(np.float32)
    y = block_reduce(y, (k, k, 1), np.max)
    y = 255 - y
    return y.clip(0, 255).astype(np.uint8)


def mini_norm(x):
    y = x.astype(np.float32)
    y = 1 - y / 255.0
    y -= np.min(y)
    y /= np.max(y)
    return (255.0 - y * 80.0).astype(np.uint8)


def hard_norm(x):
    o = x.astype(np.float32)
    b = cv2.GaussianBlur(x, (3, 3), 0).astype(np.float32)
    y = (o - b + 255.0).clip(0, 255)
    y = 1 - y / 255.0
    y -= np.min(y)
    y /= np.max(y)
    y[y < np.mean(y)] = 0
    y[y > 0] = 1
    return (255.0 - y * 255.0).astype(np.uint8)


def sensitive(x, s=15.0):
    y = x.astype(np.float32)
    y -= s
    y /= 255.0 - s * 2.0
    y *= 255.0
    return y.clip(0, 255).astype(np.uint8)


def min_black(x):
    return np.tile(np.min(x, axis=2, keepdims=True), [1, 1, 3])


def eye_black(x):
    return cv2.cvtColor(cv2.cvtColor(x, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB)


def cal_std(x):
    y = (cv2.resize(x, (128, 128), cv2.INTER_AREA)).astype(np.float32)
    return np.mean(np.var(y, axis=2))


def emph_line(x, y, c):
    a = x.astype(np.float32)
    b = y.astype(np.float32)[:, :, None] / 255.0
    c = np.tile(c[None, None, ::-1], [a.shape[0], a.shape[1], 1])
    return (a * b + c * (1 - b)).clip(0, 255).astype(np.uint8)


def de_line(x, y):
    a = x.astype(np.float32)
    b = y.astype(np.float32)[:, :, None] / 255.0
    c = np.tile(np.array([255, 255, 255])[None, None, ::-1], [a.shape[0], a.shape[1], 1])
    return (a * b + c * (1 - b)).clip(0, 255).astype(np.uint8)


def blur_line(x, y):
    o = x.astype(np.float32)
    b = cv2.GaussianBlur(x, (3, 3), 0).astype(np.float32)
    k = y.astype(np.float32)[:, :, None] / 255.0
    return (o * k + b * (1 - k)).clip(0, 255).astype(np.uint8)


def clip_15(x, s=15.0):
    return ((x - s) / (255.0 - s - s)).clip(0, 1) * 255.0


def cv_denoise(x):
    return cv2.fastNlMeansDenoisingColored(x, None, 3, 3, 7, 21)


def norm_sketch(x):
    tiny_image = cv2.resize(x, (256, 256), interpolation=cv2.INTER_AREA)
    min = np.min(tiny_image)
    max = np.max(tiny_image)
    y = x.astype(np.float)
    y -= min
    y /= max - min
    y *= 255.0
    return y.clip(0, 255).astype(np.uint8)


clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(16, 16))


def go_cal(x):
    r = clahe.apply(x[:, :, 0])
    g = clahe.apply(x[:, :, 1])
    b = clahe.apply(x[:, :, 2])
    img = np.stack([r, g, b], axis=2)
    return img


def shrink(x):
    a = cv2.resize(x, (x.shape[1] // 2, x.shape[0] // 2), cv2.INTER_AREA)
    b = a[:, ::-1]
    c = a[::-1, :]
    d = a[::-1, ::-1]
    e = np.concatenate([a, b], axis=1)
    f = np.concatenate([c, d], axis=1)
    g = np.concatenate([e, f], axis=0)
    return g


barriersss = np.zeros(shape=(1024, 1024), dtype=np.uint8)
for _x in range(1024):
    for _y in range(1024):
        if _x % 32 == 0 or _y % 32 == 0 or _x % 32 == 1 or _y % 32 == 1 or _x % 32 == 2 or _y % 32 == 2 or _x % 32 == 3 or _y % 32 == 3 or _x % 32 == 4 or _y % 32 == 4:
            barriersss[_x, _y] = 1


def check_filter(x):
    kbas = cv2.resize(barriersss, (x.shape[1], x.shape[0]), interpolation=cv2.INTER_NEAREST)
    result = np.zeros_like(x)
    result[kbas > 0] = x[kbas > 0]
    return result


def get_hue_direction(source, target):
    h1 = cv2.cvtColor(source, cv2.COLOR_RGB2HSV)[:, :, 0].astype(np.float32)
    h2 = cv2.cvtColor(target, cv2.COLOR_RGB2HSV)[:, :, 0].astype(np.float32)
    h3 = h2 + 256
    h4 = h2 - 256
    r1 = h2 - h1
    r2 = h3 - h1
    r3 = h4 - h1
    rs = r1.copy()
    rs[np.abs(r2) < np.abs(rs)] = r2[np.abs(r2) < np.abs(rs)]
    rs[np.abs(r3) < np.abs(rs)] = r3[np.abs(r3) < np.abs(rs)]
    rs[rs < 0] = 0
    rs[rs > 0] = 255
    return rs.clip(0, 255).astype(np.uint8)


def small_norm(x):
    x = cv2.resize(x, (256, 256), cv2.INTER_AREA)
    x = np_max_pool(x)
    x = np_max_pool(x)
    x = np_max_pool(x)
    x = cv2.GaussianBlur(x, (0, 0), 3.0)
    return x


def cli_norm(sketch):
    tiny_sketch = cv2.resize(sketch, (256, 256), interpolation=cv2.INTER_AREA).astype(np.float32)
    tiny_min = np.min(tiny_sketch)
    tiny_max = np.max(tiny_sketch)
    return ((sketch.astype(np.float32) - tiny_min) / (tiny_max - tiny_min) * 255.0).clip(0, 255).astype(np.uint8)


def image_colorfulness(image):
    R = image[:, :, 0].astype(np.float32)
    G = image[:, :, 1].astype(np.float32)
    B = image[:, :, 2].astype(np.float32)

    R -= np.mean(R)
    G -= np.mean(G)
    B -= np.mean(B)

    rg = np.absolute(R - G)

    yb = np.absolute(0.5 * (R + G) - B)

    (rbMean, rbStd) = (np.mean(rg), np.std(rg))
    (ybMean, ybStd) = (np.mean(yb), np.std(yb))

    stdRoot = np.sqrt((rbStd ** 2) + (ybStd ** 2))
    meanRoot = np.sqrt((rbMean ** 2) + (ybMean ** 2))

    return stdRoot + (0.3 * meanRoot)


def reason_blending(color, sketch):
    color = (color.astype(np.float32) / 255.0).clip(0, 1)
    sketch = (sketch.astype(np.float32) / 255.0).clip(0, 1)
    sketch_r = sketch.copy()
    sketch_r = sketch_r ** 5
    color_max = np.max(color, axis=2, keepdims=True)
    downs = color ** np.pi
    downs = (downs + 1e-10) / (np.max(downs, axis=2, keepdims=True) + 1e-10) * color_max
    bleeding = color * sketch_r + downs * (1 - sketch_r)
    result_YUV = cv2.cvtColor((bleeding * 255.0).clip(0, 255).astype(np.uint8), cv2.COLOR_RGB2YUV)
    sketch_YUV = cv2.cvtColor((sketch * 255.0).clip(0, 255).astype(np.uint8), cv2.COLOR_RGB2YUV)
    result_YUV[:, :, 0] = np.minimum(result_YUV[:, :, 0], sketch_YUV[:, :, 0])
    return cv2.cvtColor(result_YUV, cv2.COLOR_YUV2RGB)


def absmax(a, axis=None):
    amax = a.max(axis)
    amin = a.min(axis)
    return np.where(-amin > amax, amin, amax)