TimeSFormer / app.py
thinh-huynh-re's picture
Fix
53628ab
raw
history blame
3.81 kB
import os
from typing import List, Tuple
import multiprocessing
import numpy as np
import pandas as pd
import streamlit as st
import torch
from torch import Tensor
from decord import VideoReader, cpu
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
np.random.seed(0)
st.set_page_config(
page_title="TimeSFormer",
page_icon="🧊",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
"Get Help": "https://www.extremelycoolapp.com/help",
"Report a bug": "https://www.extremelycoolapp.com/bug",
"About": "# This is a header. This is an *extremely* cool app!",
},
)
def sample_frame_indices(
clip_len: int, frame_sample_rate: float, seg_len: int
) -> np.ndarray:
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
# @st.cache_resource
@st.experimental_singleton
def load_model(model_name: str):
if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name:
feature_extractor = AutoFeatureExtractor.from_pretrained(
"MCG-NJU/videomae-base-finetuned-kinetics"
)
else:
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = TimesformerForVideoClassification.from_pretrained(model_name)
return feature_extractor, model
def inference(file_path: str):
videoreader = VideoReader(VIDEO_TMP_PATH, num_threads=1, ctx=cpu(0))
# sample 8 frames
videoreader.seek(0)
indices = sample_frame_indices(
clip_len=8, frame_sample_rate=4, seg_len=len(videoreader)
)
video = videoreader.get_batch(indices).asnumpy()
inputs = feature_extractor(list(video), return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits: Tensor = outputs.logits
# model predicts one of the 400 Kinetics-400 classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
TOP_K = 12
# logits = np.squeeze(logits)
logits = logits.squeeze().numpy()
indices = np.argsort(logits)[::-1][:TOP_K]
values = logits[indices]
results: List[Tuple[str, float]] = []
for index, value in zip(indices, values):
predicted_label = model.config.id2label[index]
print(f"Label: {predicted_label} - {value:.2f}%")
results.append((predicted_label, value))
return pd.DataFrame(results, columns=("Label", "Confidence"))
st.title("TimeSFormer")
with st.expander("INTRODUCTION"):
st.text(
f"""Streamlit demo for TimeSFormer.
Author: Hiep Phuoc Secondary High School
Number of CPU(s): {multiprocessing.cpu_count()}
"""
)
model_name = st.selectbox(
"model_name",
(
"facebook/timesformer-base-finetuned-k400",
"facebook/timesformer-base-finetuned-k600",
"facebook/timesformer-base-finetuned-ssv2",
"facebook/timesformer-hr-finetuned-k600",
"facebook/timesformer-hr-finetuned-k400",
"facebook/timesformer-hr-finetuned-ssv2",
"fcakyon/timesformer-large-finetuned-k400",
"fcakyon/timesformer-large-finetuned-k600",
),
)
feature_extractor, model = load_model(model_name)
VIDEO_TMP_PATH = os.path.join("tmp", "tmp.mp4")
uploadedfile = st.file_uploader("Upload file", type=["mp4"])
if uploadedfile is not None:
with st.spinner():
with open(VIDEO_TMP_PATH, "wb") as f:
f.write(uploadedfile.getbuffer())
with st.spinner("Processing..."):
df = inference(VIDEO_TMP_PATH)
st.dataframe(df)
st.video(VIDEO_TMP_PATH)