Spaces:
Sleeping
Sleeping
import gradio as gr | |
import google.generativeai as genai | |
from dotenv import load_dotenv | |
# Load environment variables from .env file | |
load_dotenv() | |
# Retrieve API key from environment variable | |
GEMINI_API_KEY = "AIzaSyA0SnGcdEuesDusLiM93N68-vaFF14RCYg" # public API | |
# Configure Google Gemini API | |
genai.configure(api_key=GEMINI_API_KEY) | |
# Create the model configuration | |
generation_config = { | |
"temperature": 0.7, | |
"top_p": 0.95, | |
"top_k": 64, | |
"max_output_tokens": 512, # Adjust as needed | |
"response_mime_type": "text/plain", | |
} | |
# Simplified safety settings (or try removing them to test) | |
safety_settings = [ | |
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"}, | |
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"} | |
] | |
def generate_response(user_input, chat_history): | |
"""Generates a response based on user input and chat history.""" | |
# Add user input to history | |
chat_history.append(("user", user_input)) | |
# Limit history length to the last 10 messages | |
chat_history = chat_history[-10:] | |
# Create the generative model | |
model = genai.GenerativeModel( | |
model_name="gemini-1.5-pro", | |
generation_config=generation_config, | |
safety_settings=safety_settings, | |
system_instruction="You are Shadow the Hedgehog and you must act like Shadow the Hedgehog's personality.", | |
) | |
retry_attempts = 3 | |
for attempt in range(retry_attempts): | |
try: | |
# Start a new chat session | |
chat_session = model.start_chat() | |
# Format the history for the model | |
formatted_history = "\n".join([f"{role}: {msg}" for role, msg in chat_history]) | |
response = chat_session.send_message(formatted_history) | |
# Append the assistant's response to history | |
chat_history.append(("assistant", response.text)) | |
return chat_history | |
except Exception as e: | |
if attempt < retry_attempts - 1: | |
continue | |
else: | |
chat_history.append(("assistant", f"Error after {retry_attempts} attempts: {str(e)}")) | |
return chat_history | |
# Build the Gradio interface using Chatbot and Button | |
with gr.Blocks() as iface: | |
chatbot = gr.Chatbot() # Create a Chatbot component | |
user_input = gr.Textbox(label="Talk to AI", placeholder="Enter your message here...", lines=2) | |
submit_button = gr.Button("Send") # Create a button to submit messages | |
chat_history_state = gr.State([]) # State input for chat history | |
# Define the layout and components | |
submit_button.click( | |
fn=generate_response, | |
inputs=[user_input, chat_history_state], | |
outputs=chatbot | |
) | |
# Optional: Clear the input box after submission | |
def clear_input(): | |
return "" | |
user_input.submit( | |
fn=generate_response, | |
inputs=[user_input, chat_history_state], | |
outputs=chatbot | |
).then(clear_input, outputs=[user_input]) | |
iface.launch() | |