Spaces:
Sleeping
Sleeping
File size: 2,580 Bytes
12c7fb3 6e61f9d 12c7fb3 59e59a5 12c7fb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import os
import gradio as gr
import google.generativeai as genai
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Retrieve API key from environment variable
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# Configure Google Gemini API
genai.configure(api_key=GEMINI_API_KEY)
# Create the model configuration
generation_config = {
"temperature": 0.7,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 512, # Adjust as needed
"response_mime_type": "text/plain",
}
# Define safety settings for the model
safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
]
# Function to generate a response based on user input and chat history
def generate_response(user_input, chat_history):
"""Generates a response based on user input, chat history, and selected character."""
# Update system content with the full character description
updated_system_content = f"You are Shadow the Hedgehog and you must act like Shadow the Hedgehog's personality."
# Create the generative model
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
safety_settings=safety_settings,
system_instruction=updated_system_content,
)
# Add user input to history
chat_history.append(user_input)
# Limit history length to the last 10 messages
chat_history = chat_history[-10:]
# Start a new chat session
chat_session = model.start_chat()
# Send the entire chat history as the first message
response = chat_session.send_message("\n".join(chat_history))
# Return response and updated chat history
return response.text, chat_history
# Build the Gradio interface
with gr.Blocks(title="Hev832/Applio") as iface:
gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(lines=2, label="Talk to AI", placeholder="Enter your message here..."),
gr.State([]), # State input for chat history
],
outputs=[
gr.Textbox(label="Response"),
gr.State([]) # State output to update chat history
],
title="Shadow Chat",
description=(
"<center>Chat with Shadow the Hedgehog!<br>"
)
)
iface.launch() |