Spaces:
Runtime error
Runtime error
admin
commited on
Commit
•
278c80b
1
Parent(s):
46493cf
sync
Browse files- .gitattributes +10 -11
- .gitignore +4 -0
- README.md +3 -3
- app.py +101 -0
- model.py +158 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -1,35 +1,34 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
13 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
20 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.db* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.ark* filter=lfs diff=lfs merge=lfs -text
|
30 |
+
**/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
|
31 |
+
**/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
|
32 |
+
**/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/*
|
2 |
+
*.pth
|
3 |
+
flagged/*
|
4 |
+
rename.sh
|
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
title: SVHN Recognition
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
1 |
---
|
2 |
title: SVHN Recognition
|
3 |
+
emoji: 🚪
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
The Doorplate Recognition model is implemented using a deep convolutional neural network in PyTorch, with the objective of discerning multi-digit doorplate numbers from street view images. Utilizing the SVHN dataset extracted from Google Street View house numbers, the model is trained to identify sets of Arabic digits (0-9) within each image. The PyTorch implementation exhibits a commendable level of accuracy, achieving a tested precision of up to 89%. When users upload images containing doorplate numbers and submit them, the system yields precise recognition results for the digits present in the doorplate. This implementation provides a robust and user-friendly solution for doorplate number identification, demonstrating practical applications in the realm of image-based digit recognition.
|
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import warnings
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
from model import Model
|
8 |
+
from torchvision import transforms
|
9 |
+
from modelscope import snapshot_download
|
10 |
+
|
11 |
+
|
12 |
+
MODEL_DIR = snapshot_download("MuGeminorum/svhn", cache_dir="./__pycache__")
|
13 |
+
|
14 |
+
|
15 |
+
def infer(input_img: str, checkpoint_file: str):
|
16 |
+
try:
|
17 |
+
model = Model()
|
18 |
+
model.restore(f"{MODEL_DIR}/{checkpoint_file}")
|
19 |
+
outstr = ""
|
20 |
+
with torch.no_grad():
|
21 |
+
transform = transforms.Compose(
|
22 |
+
[
|
23 |
+
transforms.Resize([64, 64]),
|
24 |
+
transforms.CenterCrop([54, 54]),
|
25 |
+
transforms.ToTensor(),
|
26 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
27 |
+
]
|
28 |
+
)
|
29 |
+
image = Image.open(input_img)
|
30 |
+
image = image.convert("RGB")
|
31 |
+
image = transform(image)
|
32 |
+
images = image.unsqueeze(dim=0)
|
33 |
+
(
|
34 |
+
length_logits,
|
35 |
+
digit1_logits,
|
36 |
+
digit2_logits,
|
37 |
+
digit3_logits,
|
38 |
+
digit4_logits,
|
39 |
+
digit5_logits,
|
40 |
+
) = model.eval()(images)
|
41 |
+
length_prediction = length_logits.max(1)[1]
|
42 |
+
digit1_prediction = digit1_logits.max(1)[1]
|
43 |
+
digit2_prediction = digit2_logits.max(1)[1]
|
44 |
+
digit3_prediction = digit3_logits.max(1)[1]
|
45 |
+
digit4_prediction = digit4_logits.max(1)[1]
|
46 |
+
digit5_prediction = digit5_logits.max(1)[1]
|
47 |
+
output = [
|
48 |
+
digit1_prediction.item(),
|
49 |
+
digit2_prediction.item(),
|
50 |
+
digit3_prediction.item(),
|
51 |
+
digit4_prediction.item(),
|
52 |
+
digit5_prediction.item(),
|
53 |
+
]
|
54 |
+
|
55 |
+
for i in range(length_prediction.item()):
|
56 |
+
outstr += str(output[i])
|
57 |
+
|
58 |
+
return outstr
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
return f"{e}"
|
62 |
+
|
63 |
+
|
64 |
+
def get_files(dir_path=MODEL_DIR, ext=".pth"):
|
65 |
+
files_and_folders = os.listdir(dir_path)
|
66 |
+
outputs = []
|
67 |
+
for file in files_and_folders:
|
68 |
+
if file.endswith(ext):
|
69 |
+
outputs.append(file)
|
70 |
+
|
71 |
+
return outputs
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
warnings.filterwarnings("ignore")
|
76 |
+
models = get_files()
|
77 |
+
images = get_files(f"{MODEL_DIR}/examples", ".png")
|
78 |
+
samples = []
|
79 |
+
for img in images:
|
80 |
+
samples.append(
|
81 |
+
[
|
82 |
+
f"{MODEL_DIR}/examples/{img}",
|
83 |
+
models[random.randint(0, len(models) - 1)],
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
gr.Interface(
|
88 |
+
fn=infer,
|
89 |
+
inputs=[
|
90 |
+
gr.Image(label="上传图片 Upload an image", type="filepath"),
|
91 |
+
gr.Dropdown(
|
92 |
+
label="选择权重 Select a model",
|
93 |
+
choices=models,
|
94 |
+
value=models[0],
|
95 |
+
),
|
96 |
+
],
|
97 |
+
outputs=gr.Textbox(label="识别结果 Recognition result", show_copy_button=True),
|
98 |
+
examples=samples,
|
99 |
+
allow_flagging="never",
|
100 |
+
cache_examples=False,
|
101 |
+
).launch()
|
model.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
import torch.jit
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
|
8 |
+
class Model(torch.jit.ScriptModule):
|
9 |
+
CHECKPOINT_FILENAME_PATTERN = "model-{}.pth"
|
10 |
+
|
11 |
+
__constants__ = [
|
12 |
+
"_hidden1",
|
13 |
+
"_hidden2",
|
14 |
+
"_hidden3",
|
15 |
+
"_hidden4",
|
16 |
+
"_hidden5",
|
17 |
+
"_hidden6",
|
18 |
+
"_hidden7",
|
19 |
+
"_hidden8",
|
20 |
+
"_hidden9",
|
21 |
+
"_hidden10",
|
22 |
+
"_features",
|
23 |
+
"_classifier",
|
24 |
+
"_digit_length",
|
25 |
+
"_digit1",
|
26 |
+
"_digit2",
|
27 |
+
"_digit3",
|
28 |
+
"_digit4",
|
29 |
+
"_digit5",
|
30 |
+
]
|
31 |
+
|
32 |
+
def __init__(self):
|
33 |
+
super(Model, self).__init__()
|
34 |
+
|
35 |
+
self._hidden1 = nn.Sequential(
|
36 |
+
nn.Conv2d(in_channels=3, out_channels=48, kernel_size=5, padding=2),
|
37 |
+
nn.BatchNorm2d(num_features=48),
|
38 |
+
nn.ReLU(),
|
39 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
40 |
+
nn.Dropout(0.2),
|
41 |
+
)
|
42 |
+
self._hidden2 = nn.Sequential(
|
43 |
+
nn.Conv2d(in_channels=48, out_channels=64, kernel_size=5, padding=2),
|
44 |
+
nn.BatchNorm2d(num_features=64),
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
47 |
+
nn.Dropout(0.2),
|
48 |
+
)
|
49 |
+
self._hidden3 = nn.Sequential(
|
50 |
+
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2),
|
51 |
+
nn.BatchNorm2d(num_features=128),
|
52 |
+
nn.ReLU(),
|
53 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
54 |
+
nn.Dropout(0.2),
|
55 |
+
)
|
56 |
+
self._hidden4 = nn.Sequential(
|
57 |
+
nn.Conv2d(in_channels=128, out_channels=160, kernel_size=5, padding=2),
|
58 |
+
nn.BatchNorm2d(num_features=160),
|
59 |
+
nn.ReLU(),
|
60 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
61 |
+
nn.Dropout(0.2),
|
62 |
+
)
|
63 |
+
self._hidden5 = nn.Sequential(
|
64 |
+
nn.Conv2d(in_channels=160, out_channels=192, kernel_size=5, padding=2),
|
65 |
+
nn.BatchNorm2d(num_features=192),
|
66 |
+
nn.ReLU(),
|
67 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
68 |
+
nn.Dropout(0.2),
|
69 |
+
)
|
70 |
+
self._hidden6 = nn.Sequential(
|
71 |
+
nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
|
72 |
+
nn.BatchNorm2d(num_features=192),
|
73 |
+
nn.ReLU(),
|
74 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
75 |
+
nn.Dropout(0.2),
|
76 |
+
)
|
77 |
+
self._hidden7 = nn.Sequential(
|
78 |
+
nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
|
79 |
+
nn.BatchNorm2d(num_features=192),
|
80 |
+
nn.ReLU(),
|
81 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
82 |
+
nn.Dropout(0.2),
|
83 |
+
)
|
84 |
+
self._hidden8 = nn.Sequential(
|
85 |
+
nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
|
86 |
+
nn.BatchNorm2d(num_features=192),
|
87 |
+
nn.ReLU(),
|
88 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
89 |
+
nn.Dropout(0.2),
|
90 |
+
)
|
91 |
+
self._hidden9 = nn.Sequential(nn.Linear(192 * 7 * 7, 3072), nn.ReLU())
|
92 |
+
self._hidden10 = nn.Sequential(nn.Linear(3072, 3072), nn.ReLU())
|
93 |
+
|
94 |
+
self._digit_length = nn.Sequential(nn.Linear(3072, 7))
|
95 |
+
self._digit1 = nn.Sequential(nn.Linear(3072, 11))
|
96 |
+
self._digit2 = nn.Sequential(nn.Linear(3072, 11))
|
97 |
+
self._digit3 = nn.Sequential(nn.Linear(3072, 11))
|
98 |
+
self._digit4 = nn.Sequential(nn.Linear(3072, 11))
|
99 |
+
self._digit5 = nn.Sequential(nn.Linear(3072, 11))
|
100 |
+
|
101 |
+
@torch.jit.script_method
|
102 |
+
def forward(self, x):
|
103 |
+
x = self._hidden1(x)
|
104 |
+
x = self._hidden2(x)
|
105 |
+
x = self._hidden3(x)
|
106 |
+
x = self._hidden4(x)
|
107 |
+
x = self._hidden5(x)
|
108 |
+
x = self._hidden6(x)
|
109 |
+
x = self._hidden7(x)
|
110 |
+
x = self._hidden8(x)
|
111 |
+
x = x.view(x.size(0), 192 * 7 * 7)
|
112 |
+
x = self._hidden9(x)
|
113 |
+
x = self._hidden10(x)
|
114 |
+
|
115 |
+
length_logits = self._digit_length(x)
|
116 |
+
digit1_logits = self._digit1(x)
|
117 |
+
digit2_logits = self._digit2(x)
|
118 |
+
digit3_logits = self._digit3(x)
|
119 |
+
digit4_logits = self._digit4(x)
|
120 |
+
digit5_logits = self._digit5(x)
|
121 |
+
|
122 |
+
return (
|
123 |
+
length_logits,
|
124 |
+
digit1_logits,
|
125 |
+
digit2_logits,
|
126 |
+
digit3_logits,
|
127 |
+
digit4_logits,
|
128 |
+
digit5_logits,
|
129 |
+
)
|
130 |
+
|
131 |
+
def store(self, path_to_dir, step, maximum=5):
|
132 |
+
path_to_models = glob.glob(
|
133 |
+
os.path.join(path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format("*"))
|
134 |
+
)
|
135 |
+
if len(path_to_models) == maximum:
|
136 |
+
min_step = min(
|
137 |
+
[
|
138 |
+
int(path_to_model.split("\\")[-1][6:-4])
|
139 |
+
for path_to_model in path_to_models
|
140 |
+
]
|
141 |
+
)
|
142 |
+
path_to_min_step_model = os.path.join(
|
143 |
+
path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(min_step)
|
144 |
+
)
|
145 |
+
os.remove(path_to_min_step_model)
|
146 |
+
|
147 |
+
path_to_checkpoint_file = os.path.join(
|
148 |
+
path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(step)
|
149 |
+
)
|
150 |
+
torch.save(self.state_dict(), path_to_checkpoint_file)
|
151 |
+
return path_to_checkpoint_file
|
152 |
+
|
153 |
+
def restore(self, path_to_checkpoint_file):
|
154 |
+
self.load_state_dict(
|
155 |
+
torch.load(path_to_checkpoint_file, map_location=torch.device("cpu"))
|
156 |
+
)
|
157 |
+
step = int(path_to_checkpoint_file.split("model-")[-1][:-4])
|
158 |
+
return step
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pillow
|
3 |
+
torch
|
4 |
+
torchvision
|