Spaces:
Running
Running
File size: 2,123 Bytes
91b8d6e 59b685c 91b8d6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
import requests
from PIL import Image
import torch
# 下载示例图片
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png')
# 加载模型和处理器
model = PaliGemmaForConditionalGeneration.from_pretrained("ahmed-masry/chartgemma")
processor = AutoProcessor.from_pretrained("ahmed-masry/chartgemma")
def predict(image, input_text):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
image = image.convert("RGB")
inputs = processor(text=input_text, images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
prompt_length = inputs['input_ids'].shape[1]
# 生成文本
generate_ids = model.generate(**inputs, max_new_tokens=512)
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return output_text
examples = [
["chart_example_1.png", "Describe the trend of the mortality rates for children before age 5"],
["chart_example_2.png", "What is the share of respondents who prefer Facebook Messenger in the 30-59 age group?"]
]
title = "ChartGemma 模型的互动式 Gradio 演示"
with gr.Blocks(css="theme.css") as demo:
gr.Markdown(f"# {title}")
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="图表图像")
input_prompt = gr.Textbox(label="输入")
with gr.Column():
model_output = gr.Textbox(label="输出")
gr.Examples(examples=examples, inputs=[image, input_prompt])
submit_button = gr.Button("运行")
submit_button.click(predict, inputs=[image, input_prompt], outputs=model_output)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|