File size: 2,123 Bytes
91b8d6e
 
 
 
 
 
 
 
 
 
 
59b685c
 
91b8d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
import requests
from PIL import Image
import torch

# 下载示例图片
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png')

# 加载模型和处理器
model = PaliGemmaForConditionalGeneration.from_pretrained("ahmed-masry/chartgemma")
processor = AutoProcessor.from_pretrained("ahmed-masry/chartgemma")

def predict(image, input_text):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

    image = image.convert("RGB")

    inputs = processor(text=input_text, images=image, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}

    prompt_length = inputs['input_ids'].shape[1]

    # 生成文本
    generate_ids = model.generate(**inputs, max_new_tokens=512)
    output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

    return output_text

examples = [
    ["chart_example_1.png", "Describe the trend of the mortality rates for children before age 5"],
    ["chart_example_2.png", "What is the share of respondents who prefer Facebook Messenger in the 30-59 age group?"]
]

title = "ChartGemma 模型的互动式 Gradio 演示"

with gr.Blocks(css="theme.css") as demo:
    gr.Markdown(f"# {title}")

    with gr.Row():
        with gr.Column():
            image = gr.Image(type="pil", label="图表图像")
            input_prompt = gr.Textbox(label="输入")

        with gr.Column():
            model_output = gr.Textbox(label="输出")

    gr.Examples(examples=examples, inputs=[image, input_prompt])
    
    submit_button = gr.Button("运行")
    submit_button.click(predict, inputs=[image, input_prompt], outputs=model_output)

demo.launch(server_name="0.0.0.0", server_port=7860, share=True)