Hennara commited on
Commit
38f4f24
1 Parent(s): 97e14c5

add utils file

Browse files
Files changed (1) hide show
  1. app.py +77 -5
app.py CHANGED
@@ -1,10 +1,82 @@
1
  import streamlit as st
2
  from utils import memory_moe_mlp, memory_mlp_layer, memory_for_attention_layer
3
 
4
- st.title("Model Memory Usage Calculator")
5
 
6
- x = st.slider('Select a value')
7
- hidden_size = st.slider("The Hidden size (d_model | d)", min_value=128, max_value=2**20, step=128)
8
 
9
- st.write(f"The memory usage in case of Dense model is: {x}")
10
- st.write(f"The memory usage in case of MOE model with the same argument{hidden_size}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  from utils import memory_moe_mlp, memory_mlp_layer, memory_for_attention_layer
3
 
 
4
 
5
+ def main():
6
+ st.title("LLM Model Memory Usage Calculator")
7
 
8
+ st.sidebar.header("Model Parameters")
9
+ precession = st.sidebar.number_input("precession in Byte", min_value=1, max_value=4, value=2, step=2)
10
+ hidden_size = st.sidebar.number_input("Hidden Size", min_value=512, max_value=2 ** 16, value=4096, step=512)
11
+ num_heads = st.sidebar.number_input("Number of Attention Heads", min_value=4, max_value=128, value=32, step=4)
12
+ batch_size = st.sidebar.number_input("Batch Size", min_value=1, max_value=256, value=64, step=4)
13
+ seq_len = st.sidebar.number_input("Sequence Length", min_value=512, max_value=128000, value=2048, step=512)
14
+ intermediate_size = st.sidebar.number_input("Intermediate Size", min_value=1024, max_value=2 ** 18, value=11008,
15
+ step=128)
16
+ layers = st.sidebar.number_input("Number of Layers", min_value=6, max_value=48, value=30, step=1)
17
+ moe = st.sidebar.checkbox("Use Mixture of Experts (MOE)", value=False)
18
+
19
+ # Conditional rendering for MOE parameters
20
+ if moe:
21
+ top_k = st.sidebar.number_input("Number of Experts to use (Top K)", min_value=1, max_value=16, value=2, step=1)
22
+ num_experts = st.sidebar.number_input("Total Number of Experts", min_value=2, max_value=32, value=4, step=2)
23
+ else:
24
+ top_k = 2 # Default values if MOE is not used
25
+ num_experts = 4
26
+
27
+ attention_memory = memory_for_attention_layer(precession,
28
+ seq_len,
29
+ batch_size,
30
+ hidden_size,
31
+ num_heads)
32
+
33
+ dense_mlp_memory = memory_mlp_layer(precession,
34
+ seq_len,
35
+ batch_size,
36
+ hidden_size,
37
+ intermediate_size)
38
+
39
+ dense_model_memory = layers * (attention_memory + dense_mlp_memory) // (1024 ** 3)
40
+ space = st.empty()
41
+ space.markdown('<div style="height: 20px;"></div>', unsafe_allow_html=True)
42
+
43
+ st.markdown(
44
+ f'<div style="background-color: #b3f0ff; padding: 30px; border-radius: 5px;">'
45
+ f'<p style="font-weight: bold;">The memory requirement for this model is ~ {dense_model_memory} GB</p>'
46
+ f'</div>',
47
+ unsafe_allow_html=True
48
+ )
49
+ space = st.empty()
50
+ space.markdown('<div style="height: 40px;"></div>', unsafe_allow_html=True)
51
+
52
+ if moe:
53
+ moe_memory = memory_moe_mlp(precession,
54
+ seq_len,
55
+ batch_size,
56
+ hidden_size,
57
+ intermediate_size,
58
+ num_experts,
59
+ top_k)
60
+ moe_model = layers * (attention_memory + moe_memory) // (1024 ** 3)
61
+
62
+ st.markdown(
63
+ f'<div style="background-color: #99ff99; padding: 30px; border-radius: 5px;">'
64
+ f'<p style="font-weight: bold;">The memory requirement for the MOE model is ~ {moe_model} GB</p>'
65
+ f'</div>',
66
+ unsafe_allow_html=True
67
+ )
68
+
69
+ space = st.empty()
70
+ space.markdown('<div style="height: 40px;"></div>', unsafe_allow_html=True)
71
+
72
+ st.markdown(
73
+ f'<div style="background-color: #f0f0f0; padding: 30px; border-radius: 5px;">'
74
+ f'<p style="font-weight: bold;">For more information please read this article</p>'
75
+ f'<a href="https://medium.com/@khalil.hennara.247/llm-memory-usage-f62a007a509c">Article</a>'
76
+ f'</div>',
77
+ unsafe_allow_html=True
78
+ )
79
+
80
+
81
+ if __name__ == "__main__":
82
+ main()