Spaces:
Runtime error
Runtime error
import requests | |
import streamlit as st | |
from layouts.mainlayout import mainlayout | |
def upload_data(): | |
# upload pdf | |
upload_pdf = st.file_uploader("Upload PDF", type="pdf") | |
if upload_pdf is not None: | |
files = {"file": upload_pdf} | |
with st.spinner("Uploading PDF..."): | |
response = requests.post( | |
"https://hemanthsai7-studybotapi.hf.space/api/upload", files=files | |
) | |
if response.status_code == 200: | |
st.success( | |
f'{response.json()["message"][0]}. Vector Store created successfully!' | |
) | |
st.session_state.uploaded_pdf=True | |
else: | |
st.error("Failed to upload PDF!") | |
upload_data() | |
with st.expander("What happens when I upload a PDF? π", expanded=True): | |
st.info( | |
""" | |
- The PDF is uploaded to the backend server. βοΈ | |
- The PDF is converted into small chunks for faster processing. π | |
- The chunks are broken down into tokens. A token is a single word or a group of words. π | |
- The tokens are converted into embedding vectors. π | |
- The embedding vectors are stored in a vector store. ποΈ | |
""", | |
icon="βΉοΈ", | |
) | |
st.divider() | |
if "uploaded_pdf" in st.session_state.keys(): | |
# chatbot | |
st.subheader("Ask Studybot a question! π€") | |
if "messages" not in st.session_state.keys(): | |
st.session_state.messages = [ | |
{ | |
"role": "assistant", | |
"content": "What's troubling you? Ask me a question right away!", | |
} | |
] | |
# Display or clear chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
def clear_chat_history(): | |
st.session_state.messages = [ | |
{ | |
"role": "assistant", | |
"content": "What's troubling you? Ask me a question right away!", | |
} | |
] | |
st.sidebar.button("Clear Chat History", on_click=clear_chat_history) | |
def generate_mistral_response(question: str): | |
for dict_message in st.session_state.messages: | |
if dict_message["role"] == "user": | |
question = dict_message["content"] | |
answer = requests.post( | |
"https://hemanthsai7-studybotapi.hf.space/api/inference", | |
json={"promptMessage": question}, | |
).json() | |
return answer | |
# User-provided prompt | |
if prompt := st.chat_input( | |
disabled=not st.session_state.messages[-1]["role"] == "assistant", | |
placeholder="Hello, please ask me a question! π€"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
# ask question | |
st.write(st.session_state) | |
# Generate a new response if last message is not from assistant | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response = generate_mistral_response(prompt) | |
placeholder = st.empty() | |
full_response = "" | |
for item in response: | |
full_response += item | |
placeholder.markdown(full_response) | |
placeholder.markdown(full_response) | |
message = {"role": "assistant", "content": full_response} | |
st.session_state.messages.append(message) | |