Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,107 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
5 |
from diffusers import DiffusionPipeline
|
|
|
6 |
import torch
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
torch_dtype = torch.float32
|
15 |
|
16 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
-
pipe = pipe.to(device)
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
#@spaces.GPU #[uncomment to use ZeroGPU]
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
image = pipe(
|
31 |
prompt = prompt,
|
32 |
negative_prompt = negative_prompt,
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
).images[0]
|
39 |
|
40 |
-
return image
|
|
|
41 |
|
42 |
examples = [
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"
|
46 |
]
|
47 |
|
48 |
css="""
|
49 |
#col-container {
|
50 |
margin: 0 auto;
|
51 |
-
max-width:
|
52 |
}
|
53 |
"""
|
54 |
|
|
|
|
|
|
|
55 |
with gr.Blocks(css=css) as demo:
|
56 |
|
57 |
with gr.Column(elem_id="col-container"):
|
58 |
gr.Markdown(f"""
|
59 |
-
#
|
|
|
60 |
""")
|
61 |
|
62 |
with gr.Row():
|
63 |
-
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
66 |
show_label=False,
|
67 |
max_lines=1,
|
68 |
placeholder="Enter your prompt",
|
69 |
container=False,
|
70 |
-
)
|
71 |
-
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
-
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
negative_prompt = gr.Text(
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
-
seed = gr.Slider(
|
86 |
-
label="Seed",
|
87 |
-
minimum=0,
|
88 |
-
maximum=MAX_SEED,
|
89 |
-
step=1,
|
90 |
-
value=0,
|
91 |
-
)
|
92 |
-
|
93 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
|
97 |
-
width = gr.Slider(
|
98 |
-
label="Width",
|
99 |
-
minimum=256,
|
100 |
-
maximum=MAX_IMAGE_SIZE,
|
101 |
-
step=32,
|
102 |
-
value=1024, #Replace with defaults that work for your model
|
103 |
-
)
|
104 |
-
|
105 |
-
height = gr.Slider(
|
106 |
-
label="Height",
|
107 |
-
minimum=256,
|
108 |
-
maximum=MAX_IMAGE_SIZE,
|
109 |
-
step=32,
|
110 |
-
value=1024, #Replace with defaults that work for your model
|
111 |
-
)
|
112 |
-
|
113 |
-
with gr.Row():
|
114 |
-
|
115 |
-
guidance_scale = gr.Slider(
|
116 |
-
label="Guidance scale",
|
117 |
-
minimum=0.0,
|
118 |
-
maximum=10.0,
|
119 |
-
step=0.1,
|
120 |
-
value=0.0, #Replace with defaults that work for your model
|
121 |
-
)
|
122 |
-
|
123 |
-
num_inference_steps = gr.Slider(
|
124 |
-
label="Number of inference steps",
|
125 |
-
minimum=1,
|
126 |
-
maximum=50,
|
127 |
-
step=1,
|
128 |
-
value=2, #Replace with defaults that work for your model
|
129 |
-
)
|
130 |
-
|
131 |
gr.Examples(
|
132 |
examples = examples,
|
133 |
inputs = [prompt]
|
134 |
)
|
135 |
-
|
136 |
-
|
137 |
fn = infer,
|
138 |
-
inputs = [prompt
|
139 |
-
outputs = [result
|
140 |
)
|
141 |
|
142 |
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
+
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
|
6 |
import torch
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
+
import openvino.runtime as ov
|
9 |
+
from typing import Optional, Dict
|
10 |
|
11 |
+
model_id = "Disty0/LCM_SoteMixV3"
|
12 |
+
#model_id = "Disty0/sotediffusion-v2" #不可
|
13 |
|
14 |
+
#1024*512 記憶體不足
|
15 |
+
HIGH=512
|
16 |
+
WIDTH=512
|
|
|
17 |
|
|
|
|
|
18 |
|
19 |
+
batch_size = -1
|
20 |
+
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
|
21 |
+
def __init__(
|
22 |
+
self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
|
23 |
+
):
|
24 |
+
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
|
25 |
|
|
|
|
|
26 |
|
27 |
+
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""})
|
28 |
+
|
29 |
+
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
|
30 |
+
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
|
31 |
+
pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
|
32 |
+
#pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
|
33 |
+
#pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
|
34 |
+
#<shigure-ui-style>
|
35 |
+
#pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
|
36 |
+
#pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
|
37 |
+
#pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")
|
38 |
+
|
39 |
+
|
40 |
+
pipe.compile()
|
41 |
+
|
42 |
+
prompt=""
|
43 |
+
negative_prompt="(worst quality, low quality, lowres), zombie, interlocked fingers,"
|
44 |
+
|
45 |
+
def infer(prompt,negative_prompt):
|
46 |
+
|
47 |
image = pipe(
|
48 |
prompt = prompt,
|
49 |
negative_prompt = negative_prompt,
|
50 |
+
width = HIGH,
|
51 |
+
height = WIDTH,
|
52 |
+
guidance_scale=1.0,
|
53 |
+
num_inference_steps=4,
|
54 |
+
num_images_per_prompt=1,
|
55 |
).images[0]
|
56 |
|
57 |
+
return image
|
58 |
+
|
59 |
|
60 |
examples = [
|
61 |
+
"A cute kitten, Japanese cartoon style.",
|
62 |
+
"A sweet family, dad stands next to mom, mom holds baby girl.",
|
63 |
+
"(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,",
|
64 |
]
|
65 |
|
66 |
css="""
|
67 |
#col-container {
|
68 |
margin: 0 auto;
|
69 |
+
max-width: 520px;
|
70 |
}
|
71 |
"""
|
72 |
|
73 |
+
|
74 |
+
power_device = "CPU"
|
75 |
+
|
76 |
with gr.Blocks(css=css) as demo:
|
77 |
|
78 |
with gr.Column(elem_id="col-container"):
|
79 |
gr.Markdown(f"""
|
80 |
+
# Disty0/LCM_SoteMix {HIGH}x{WIDTH}
|
81 |
+
Currently running on {power_device}.
|
82 |
""")
|
83 |
|
84 |
with gr.Row():
|
|
|
85 |
prompt = gr.Text(
|
86 |
label="Prompt",
|
87 |
show_label=False,
|
88 |
max_lines=1,
|
89 |
placeholder="Enter your prompt",
|
90 |
container=False,
|
91 |
+
)
|
|
|
92 |
run_button = gr.Button("Run", scale=0)
|
93 |
|
94 |
result = gr.Image(label="Result", show_label=False)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
gr.Examples(
|
97 |
examples = examples,
|
98 |
inputs = [prompt]
|
99 |
)
|
100 |
+
|
101 |
+
run_button.click(
|
102 |
fn = infer,
|
103 |
+
inputs = [prompt],
|
104 |
+
outputs = [result]
|
105 |
)
|
106 |
|
107 |
demo.queue().launch()
|