|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
|
|
""" |
|
Copied from inference in colab notebook |
|
""" |
|
|
|
from transformers import pipeline |
|
|
|
|
|
model_path = "Mat17892/t5small_enfr_opus" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer |
|
import threading |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) |
|
|
|
def respond( |
|
message: str, |
|
system_message: str, |
|
max_tokens: int = 128, |
|
temperature: float = 1.0, |
|
top_p: float = 1.0, |
|
): |
|
|
|
input_text = system_message + " " + message |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) |
|
|
|
|
|
generation_thread = threading.Thread( |
|
target=model.generate, |
|
kwargs={ |
|
"input_ids": input_ids, |
|
"max_new_tokens": max_tokens, |
|
"do_sample": True, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"streamer": streamer, |
|
}, |
|
) |
|
generation_thread.start() |
|
|
|
|
|
generated_text = "" |
|
for token in streamer: |
|
generated_text += token |
|
yield generated_text |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Google Translate-like Interface") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
source_textbox = gr.Textbox( |
|
placeholder="Enter text in English...", |
|
label="Source Text (English)", |
|
lines=5, |
|
) |
|
with gr.Column(): |
|
translated_textbox = gr.Textbox( |
|
placeholder="Translation will appear here...", |
|
label="Translated Text (French)", |
|
lines=5, |
|
interactive=False, |
|
) |
|
|
|
translate_button = gr.Button("Translate") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
system_message_input = gr.Textbox( |
|
value="translate English to French:", |
|
label="System message", |
|
) |
|
max_tokens_slider = gr.Slider( |
|
minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" |
|
) |
|
temperature_slider = gr.Slider( |
|
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" |
|
) |
|
top_p_slider = gr.Slider( |
|
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" |
|
) |
|
|
|
|
|
translate_button.click( |
|
respond, |
|
inputs=[ |
|
source_textbox, |
|
system_message_input, |
|
max_tokens_slider, |
|
temperature_slider, |
|
top_p_slider, |
|
], |
|
outputs=translated_textbox, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|