room_cleaner_v2 / app.py
IronJayx
social
e6b80c6
import time
from typing import cast
from comfydeploy import ComfyDeploy
import os
import gradio as gr
from gradio.components.image_editor import EditorValue
from PIL import Image
import requests
import dotenv
from gradio_imageslider import ImageSlider
from io import BytesIO
import base64
import numpy as np
from loguru import logger
dotenv.load_dotenv()
API_KEY = os.environ.get("API_KEY")
CLEANER_DEPLOYMENT_ID = os.environ.get(
"CLEANER_DEPLOYMENT_ID", "CLEANER_DEPLOYMENT_ID_NOT_SET"
)
MASKER_DEPLOYMENT_ID = os.environ.get(
"MASKER_DEPLOYMENT_ID", "MASKER_DEPLOYMENT_ID_NOT_SET"
)
if not API_KEY:
raise ValueError("Please set API_KEY in your environment variables")
if (
not CLEANER_DEPLOYMENT_ID
or CLEANER_DEPLOYMENT_ID == "CLEANER_DEPLOYMENT_ID_NOT_SET"
):
raise ValueError("Please set CLEANER_DEPLOYMENT_ID in your environment variables")
client = ComfyDeploy(bearer_auth=API_KEY)
def get_base64_from_image(image: Image.Image) -> str:
buffered: BytesIO = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def compute_mask(
image: Image.Image | str | None, progress: gr.Progress = gr.Progress()
) -> Image.Image | None:
progress(0, desc="Preparing inputs...")
if image is None:
return None
image = resize_image(image)
image_base64 = get_base64_from_image(image)
# Prepare inputs
inputs: dict = {
"input_image": f"data:image/png;base64,{image_base64}",
"dilation_1_iterations": 10,
"dilation_2_iterations": 15,
"mask_blur_amount": 0,
}
# Call ComfyDeploy API
try:
result = client.run.create(
request={"deployment_id": MASKER_DEPLOYMENT_ID, "inputs": inputs}
)
if result and result.object:
run_id: str = result.object.run_id
progress(0, desc="Starting processing...")
# Wait for the result
while True:
run_result = client.run.get(run_id=run_id)
if not run_result.object:
continue
progress_value = run_result.object.progress or 0
status = run_result.object.live_status or "Cold starting..."
progress(progress_value, desc=f"Status: {status}")
if run_result.object.status == "success":
for output in run_result.object.outputs or []:
if output.data and output.data.images:
image_url: str = output.data.images[0].url
# Download and return the mask image
response: requests.Response = requests.get(image_url)
mask_image: Image.Image = Image.open(
BytesIO(response.content)
)
return mask_image
return None
elif run_result.object.status == "failed":
logger.debug("Processing failed")
return None
time.sleep(1) # Wait for 1 second before checking the status again
except Exception as e:
logger.debug(f"Error: {e}")
return None
def create_editor_value(image: Image.Image, mask: Image.Image) -> EditorValue:
# Convert image to numpy array
image_np = np.array(image)
# Resize mask to match image dimensions
mask_resized = mask.resize((image_np.shape[1], image_np.shape[0]), Image.NEAREST)
mask_np = np.array(mask_resized)
# Ensure mask is grayscale
if len(mask_np.shape) == 3:
mask_np = mask_np[:, :, -1]
# Create the layers array
layers = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8)
layers[:, :, 3] = mask_np
# Create the composite image
composite = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8)
composite[:, :, :3] = image_np
composite[:, :, 3] = np.where(mask_np == 255, 0, 255)
return {
"background": image_np,
"layers": [layers],
"composite": composite,
}
def run_masking(
image: np.ndarray | Image.Image | str | None,
progress: gr.Progress = gr.Progress(),
profile: gr.OAuthProfile | None = None,
) -> EditorValue | None:
if image is None:
return None
if profile is None:
gr.Info("Please log in to process the image.")
return None
# Convert np.ndarray to Image.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
mask = compute_mask(image, progress)
if mask is None:
return None
# Use the new create_editor_value function
return create_editor_value(image, mask)
def remove_objects(
image: Image.Image | str | None,
mask: Image.Image | str | None,
user_data: dict,
progress: gr.Progress = gr.Progress(),
) -> Image.Image | None:
progress(0, desc="Preparing inputs...")
if image is None or mask is None:
return None
if isinstance(mask, str):
mask = Image.open(mask)
if isinstance(image, str):
image = Image.open(image)
image_base64 = get_base64_from_image(image)
mask_base64 = get_base64_from_image(mask)
# Prepare inputs
inputs: dict = {
"image": f"data:image/png;base64,{image_base64}",
"mask": f"data:image/png;base64,{mask_base64}",
# "run_metatada": str(
# {
# "source": "HF",
# "user": user_data,
# }
# ),
}
# Call ComfyDeploy API
try:
result = client.run.create(
request={"deployment_id": CLEANER_DEPLOYMENT_ID, "inputs": inputs}
)
if result and result.object:
run_id: str = result.object.run_id
progress(0, desc="Starting processing...")
# Wait for the result
while True:
run_result = client.run.get(run_id=run_id)
if not run_result.object:
continue
progress_value = (
run_result.object.progress
if run_result.object.progress is not None
else 0
)
status = (
run_result.object.live_status
if run_result.object.live_status is not None
else "Cold starting..."
)
progress(progress_value, desc=f"Status: {status}")
if run_result.object.status == "success":
for output in run_result.object.outputs or []:
if output.data and output.data.images:
image_url: str = output.data.images[0].url
# Download and return both the original and processed images
response: requests.Response = requests.get(image_url)
processed_image: Image.Image = Image.open(
BytesIO(response.content)
)
return processed_image
return None
elif run_result.object.status == "failed":
logger.debug("Processing failed")
return None
time.sleep(1) # Wait for 1 second before checking the status again
except Exception as e:
logger.debug(f"Error: {e}")
return None
def resize_image(img: Image.Image, min_side_length: int = 768) -> Image.Image:
if img.width <= min_side_length and img.height <= min_side_length:
return img
aspect_ratio = img.width / img.height
if img.width < img.height:
new_height = int(min_side_length / aspect_ratio)
return img.resize((min_side_length, new_height))
new_width = int(min_side_length * aspect_ratio)
return img.resize((new_width, min_side_length))
def get_profile(profile) -> dict:
return {
"username": profile.username,
"profile": profile.profile,
"name": profile.name,
}
async def run_removal(
image_and_mask: EditorValue | None,
progress: gr.Progress = gr.Progress(),
profile: gr.OAuthProfile | None = None,
) -> tuple[Image.Image, Image.Image] | None:
if not image_and_mask:
gr.Info("Please upload an image and draw a mask")
return None
if profile is None:
gr.Info("Please log in to process the image.")
return None
user_data = get_profile(profile)
logger.debug("--------- RUN ----------")
logger.debug(user_data)
logger.debug("--------- RUN ----------")
image_np = image_and_mask["background"]
image_np = cast(np.ndarray, image_np)
# If the image is empty, return None
if np.sum(image_np) == 0:
gr.Info("Please upload an image")
return None
alpha_channel = image_and_mask["layers"][0]
alpha_channel = cast(np.ndarray, alpha_channel)
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
# if mask_np is empty, return None
if np.sum(mask_np) == 0:
gr.Info("Please mark the areas you want to remove")
return None
mask = Image.fromarray(mask_np)
mask = resize_image(mask)
image = Image.fromarray(image_np)
image = resize_image(image)
output = remove_objects(
image, # type: ignore
mask, # type: ignore
user_data,
progress,
)
if output is None:
gr.Info("Processing failed")
return None
progress(100, desc="Processing completed")
return image, output
with gr.Blocks() as demo:
gr.HTML("""
<div style="display: flex; justify-content: center; text-align:center; flex-direction: column;">
<h1 style="color: #333;">🧹 Room Cleaner</h1>
<div style="max-width: 800px; margin: 0 auto;">
<p style="font-size: 16px;">Upload an image and use the pencil tool (✏️ icon at the bottom) to <b>mark the areas you want to remove</b>.</p>
<p style="font-size: 16px;">
For best results, include the shadows and reflections of the objects you want to remove.
You can remove multiple objects at once.
If you forget to mask some parts of your object, it's likely that the model will reconstruct them.
</p>
<br>
<video width="640" height="360" controls style="margin: 0 auto; border-radius: 10px;">
<source src="https://dropshare.blanchon.xyz/public/dropshare/room_cleaner_demo.mp4" type="video/mp4">
</video>
<br>
<p style="font-size: 16px;">Finally, click on the <b>"Run"</b> button to process the image.</p>
<p style="font-size: 16px;">Wait for the processing to complete and compare the original and processed images using the slider.</p>
<p style="font-size: 16px;">⚠️ Note that the images are compressed to reduce the workloads of the demo. </p>
</div>
<div style="margin-top: 20px; display: flex; justify-content: center; gap: 10px;">
<a href="https://x.com/JulienBlanchon">
<img src="https://img.shields.io/badge/X-%23000000.svg?style=for-the-badge&logo=X&logoColor=white" alt="X Badge" style="border-radius: 3px;"/>
</a>
</div>
</div>
""")
login_button = gr.LoginButton(scale=8)
# ------ MASKING
with gr.Column():
with gr.Row(equal_height=False):
# The image overflow, fix
input_image = gr.Image(
label="Input Image",
height="full",
width="full",
)
gr.HTML("""
<h3 style="text-align: center;">Step 1: input image</h3>
<p style="text-align: center;">Upload an image of the room you want to clean.</p>
""")
with gr.Row(equal_height=False):
image_and_mask_auto = gr.ImageMask(
label="Image and Mask",
layers=False,
show_fullscreen_button=False,
sources=["upload"],
show_download_button=False,
interactive=True,
height="full",
width="full",
brush=gr.Brush(default_size=75, colors=["#000000"], color_mode="fixed"),
transforms=[],
)
with gr.Column():
gr.HTML("""
<h3 style="text-align: center;">Step 2: Run masking</h3>
<p style="text-align: center;">Click get mask to get automatic masking and edit it after manually if needed.</p>
""")
compute_mask_btn = gr.ClearButton(
value="Get mask",
variant="primary",
size="lg",
components=[image_and_mask_auto],
)
compute_mask_btn.click(
fn=lambda _: gr.update(interactive=False, value="Processing..."),
inputs=[],
outputs=[compute_mask_btn],
api_name=False,
).then(
fn=run_masking,
inputs=[
input_image,
],
outputs=[image_and_mask_auto],
api_name=False,
).then(
fn=lambda _: gr.update(interactive=True, value="Get mask"),
inputs=[],
outputs=[compute_mask_btn],
api_name=False,
)
# ------ REMOVAL
with gr.Row(equal_height=False):
image_slider = ImageSlider(
label="Result",
interactive=False,
)
with gr.Column():
gr.HTML("""
<h3 style="text-align: center;">Step 3: Run removal</h3>
<p style="text-align: center;">Click run to remove the objects from the image.</p>
""")
process_btn = gr.ClearButton(
value="Run",
variant="primary",
size="lg",
components=[image_slider],
)
process_btn.click(
fn=lambda _: gr.update(interactive=False, value="Processing..."),
inputs=[],
outputs=[process_btn],
api_name=False,
).then(
fn=run_removal,
inputs=[
image_and_mask_auto,
],
outputs=[image_slider],
api_name=False,
).then(
fn=lambda _: gr.update(interactive=True, value="Run"),
inputs=[],
outputs=[process_btn],
api_name=False,
)
if __name__ == "__main__":
demo.launch(
debug=False,
share=False,
show_api=False,
)