File size: 12,104 Bytes
7813680
9d1a9fc
 
 
 
 
 
 
 
 
 
 
 
 
d3d6406
9d1a9fc
 
 
 
 
 
 
7813680
 
9d1a9fc
 
 
 
 
 
 
 
 
 
 
 
7813680
9d1a9fc
 
d3d6406
9d1a9fc
 
7813680
9d1a9fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d6406
 
 
 
 
 
9d1a9fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7813680
9d1a9fc
 
 
 
 
50704a0
 
 
 
 
 
 
 
 
 
 
9d1a9fc
50704a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1a9fc
 
d3d6406
 
 
 
 
 
 
 
7813680
9d1a9fc
 
d3d6406
9d1a9fc
 
50704a0
 
 
d3d6406
 
 
 
 
 
 
 
 
50704a0
 
 
 
 
 
9d1a9fc
 
 
 
 
 
50704a0
 
 
 
9d1a9fc
 
50704a0
9d1a9fc
 
50704a0
9d1a9fc
7813680
9d1a9fc
 
d3d6406
9d1a9fc
 
 
 
50704a0
9d1a9fc
7813680
50704a0
9d1a9fc
 
 
50704a0
bad4dbf
7813680
 
 
 
 
 
 
 
50704a0
 
 
 
 
7813680
 
50704a0
7813680
50704a0
bad4dbf
 
 
 
 
50704a0
 
76396f2
9d1a9fc
 
 
50704a0
9d1a9fc
 
 
 
 
 
 
50704a0
 
9d1a9fc
 
 
 
50704a0
9d1a9fc
 
 
d3d6406
 
9d1a9fc
 
 
 
 
 
7813680
 
 
 
 
 
 
 
 
 
9d1a9fc
7813680
 
 
 
 
 
9d1a9fc
 
 
 
 
7813680
 
 
 
 
9d1a9fc
 
5275cc4
 
 
 
50704a0
9d1a9fc
 
50704a0
 
dc5a588
 
2ba904e
dc5a588
9d1a9fc
 
50704a0
 
dc5a588
 
 
 
9d1a9fc
 
50704a0
 
dc5a588
 
 
 
9d1a9fc
 
50704a0
 
dc5a588
 
 
 
9d1a9fc
 
 
 
 
 
 
 
 
 
 
 
 
 
bad4dbf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import time
from typing import cast
from comfydeploy import ComfyDeploy
import os
import gradio as gr
from gradio.components.image_editor import EditorValue
from PIL import Image
import requests
import dotenv
from gradio_imageslider import ImageSlider
from io import BytesIO
import base64
import numpy as np


dotenv.load_dotenv()


API_KEY = os.environ.get("API_KEY")
DEPLOYMENT_ID = os.environ.get("DEPLOYMENT_ID", "DEPLOYMENT_ID_NOT_SET")

if not API_KEY:
    raise ValueError("Please set API_KEY in your environment variables")
if not DEPLOYMENT_ID or DEPLOYMENT_ID == "DEPLOYMENT_ID_NOT_SET":
    raise ValueError("Please set DEPLOYMENT_ID in your environment variables")


client = ComfyDeploy(bearer_auth=API_KEY)


def get_base64_from_image(image: Image.Image) -> str:
    buffered: BytesIO = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")


def process_image(
    image: Image.Image | str | None,
    mask: Image.Image | str | None,
    user_data: dict,
    progress: gr.Progress = gr.Progress(),
) -> Image.Image | None:
    progress(0, desc="Preparing inputs...")
    if image is None or mask is None:
        return None

    if isinstance(mask, str):
        mask = Image.open(mask)
    if isinstance(image, str):
        image = Image.open(image)

    image_base64 = get_base64_from_image(image)
    mask_base64 = get_base64_from_image(mask)

    # Prepare inputs
    inputs: dict = {
        "image": f"data:image/png;base64,{image_base64}",
        "mask": f"data:image/png;base64,{mask_base64}",
        # "run_metatada": str(
        #     {
        #         "source": "HF",
        #         "user": user_data,
        #     }
        # ),
    }

    # Call ComfyDeploy API
    try:
        result = client.run.create(
            request={"deployment_id": DEPLOYMENT_ID, "inputs": inputs}
        )

        if result and result.object:
            run_id: str = result.object.run_id
            progress(0, desc="Starting processing...")
            # Wait for the result
            while True:
                run_result = client.run.get(run_id=run_id)
                if not run_result.object:
                    continue

                progress_value = (
                    run_result.object.progress
                    if run_result.object.progress is not None
                    else 0
                )
                status = (
                    run_result.object.live_status
                    if run_result.object.live_status is not None
                    else "Cold starting..."
                )
                progress(progress_value, desc=f"Status: {status}")

                if run_result.object.status == "success":
                    for output in run_result.object.outputs or []:
                        if output.data and output.data.images:
                            image_url: str = output.data.images[0].url
                            # Download and return both the original and processed images
                            response: requests.Response = requests.get(image_url)
                            processed_image: Image.Image = Image.open(
                                BytesIO(response.content)
                            )
                            return processed_image
                    return None
                elif run_result.object.status == "failed":
                    print("Processing failed")
                    return None

                time.sleep(1)  # Wait for 1 second before checking the status again
    except Exception as e:
        print(f"Error: {e}")
        return None


def make_example(background_path: str, mask_path: str) -> EditorValue:
    example1_background = np.array(Image.open(background_path))
    example1_mask_only = np.array(Image.open(mask_path))[:, :, -1]

    example1_layers = np.zeros(
        (example1_background.shape[0], example1_background.shape[1], 4), dtype=np.uint8
    )
    example1_layers[:, :, 3] = example1_mask_only

    example1_composite = np.zeros(
        (example1_background.shape[0], example1_background.shape[1], 4), dtype=np.uint8
    )
    example1_composite[:, :, :3] = example1_background
    example1_composite[:, :, 3] = np.where(example1_mask_only == 255, 0, 255)

    return {
        "background": example1_background,
        "layers": [example1_layers],
        "composite": example1_composite,
    }


def resize_image(img: Image.Image, min_side_length: int = 768) -> Image.Image:
    if img.width <= min_side_length and img.height <= min_side_length:
        return img

    aspect_ratio = img.width / img.height
    if img.width < img.height:
        new_height = int(min_side_length / aspect_ratio)
        return img.resize((min_side_length, new_height))

    new_width = int(min_side_length * aspect_ratio)
    return img.resize((new_width, min_side_length))


def get_profile(profile) -> dict:
    return {
        "username": profile.username,
        "profile": profile.profile,
        "name": profile.name,
    }


async def process(
    image_and_mask: EditorValue | None,
    progress: gr.Progress = gr.Progress(),
    profile: gr.OAuthProfile | None = None,
) -> tuple[Image.Image, Image.Image] | None:
    if not image_and_mask:
        gr.Info("Please upload an image and draw a mask")
        return None

    if profile is None:
        gr.Info("Please log in to process the image.")
        return None

    user_data = get_profile(profile)
    print("--------- RUN ----------")
    print(user_data)
    print("--------- RUN ----------")

    image_np = image_and_mask["background"]
    image_np = cast(np.ndarray, image_np)

    # If the image is empty, return None
    if np.sum(image_np) == 0:
        gr.Info("Please upload an image")
        return None

    alpha_channel = image_and_mask["layers"][0]
    alpha_channel = cast(np.ndarray, alpha_channel)
    mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)

    # if mask_np is empty, return None
    if np.sum(mask_np) == 0:
        gr.Info("Please mark the areas you want to remove")
        return None

    mask = Image.fromarray(mask_np)
    mask = resize_image(mask)

    image = Image.fromarray(image_np)
    image = resize_image(image)

    output = process_image(
        image,  # type: ignore
        mask,  # type: ignore
        user_data,
        progress,
    )

    if output is None:
        gr.Info("Processing failed")
        return None
    progress(100, desc="Processing completed")
    return image, output


with gr.Blocks() as demo:
    gr.HTML("""
        <div style="display: flex; justify-content: center; text-align:center; flex-direction: column;">
            <h1 style="color: #333;">🧹 Room Cleaner</h1>
            <div style="max-width: 800px; margin: 0 auto;">
                <p style="font-size: 16px;">Upload an image and use the pencil tool (✏️ icon at the bottom) to <b>mark the areas you want to remove</b>.</p>
                <p style="font-size: 16px;">
                    For best results, include the shadows and reflections of the objects you want to remove.
                    You can remove multiple objects at once.
                    If you forget to mask some parts of your object, it's likely that the model will reconstruct them.
                </p>
                <br>
                <video width="640" height="360" controls style="margin: 0 auto; border-radius: 10px;">
                    <source src="https://dropshare.blanchon.xyz/public/dropshare/room_cleaner_demo.mp4" type="video/mp4">
                </video>
                <br>
                <p style="font-size: 16px;">Finally, click on the <b>"Run"</b> button to process the image.</p>
                <p style="font-size: 16px;">Wait for the processing to complete and compare the original and processed images using the slider.</p>
            
                <p style="font-size: 16px;">⚠️ Note that the images are compressed to reduce the workloads of the demo. </p>
            </div>
            <div style="margin-top: 20px; display: flex; justify-content: center; gap: 10px;">
                <a href="https://x.com/JulienBlanchon">
                    <img src="https://img.shields.io/badge/X-%23000000.svg?style=for-the-badge&logo=X&logoColor=white" alt="X Badge" style="border-radius: 3px;"/>
                </a>
            </div>
        </div>
    """)
    with gr.Row(equal_height=False):
        with gr.Column():
            # The image overflow, fix
            image_and_mask = gr.ImageMask(
                label="Image and Mask",
                layers=False,
                show_fullscreen_button=False,
                sources=["upload"],
                show_download_button=False,
                interactive=True,
                height="full",
                width="full",
                brush=gr.Brush(default_size=75, colors=["#000000"], color_mode="fixed"),
                transforms=[],
            )

        with gr.Column():
            image_slider = ImageSlider(
                label="Result",
                interactive=False,
            )

            login_button = gr.LoginButton(scale=8)

            process_btn = gr.ClearButton(
                value="Run",
                variant="primary",
                size="lg",
                components=[image_slider],
            )

            # image_slider.change(
            #     fn=on_change_prompt,
            #     inputs=[
            #         image_slider,
            #     ],
            #     outputs=[process_btn],
            #     api_name=False,
            # )

            process_btn.click(
                fn=lambda _: gr.update(interactive=False, value="Processing..."),
                inputs=[],
                outputs=[process_btn],
                api_name=False,
            ).then(
                fn=process,
                inputs=[
                    image_and_mask,
                ],
                outputs=[image_slider],
                api_name=False,
            ).then(
                fn=lambda _: gr.update(interactive=True, value="Run"),
                inputs=[],
                outputs=[process_btn],
                api_name=False,
            )

    example1 = make_example("./examples/ex1.jpg", "./examples/ex1_mask_only.png")
    example2 = make_example("./examples/ex2.jpg", "./examples/ex2_mask_only.png")
    example3 = make_example("./examples/ex3.jpg", "./examples/ex3_mask_only.png")
    example4 = make_example("./examples/ex4.jpg", "./examples/ex4_mask_only.png")

    examples = [
        [
            example1,
            # ("./examples/ex1.jpg", "./examples/ex1_result.png")
            (
                "https://dropshare.blanchon.xyz/public/dropshare/ex1.jpg",
                "https://dropshare.blanchon.xyz/public/dropshare/ex1_results.png",
            ),
        ],
        [
            example2,
            # ("./examples/ex2.jpg", "./examples/ex2_result.png")
            (
                "https://dropshare.blanchon.xyz/public/dropshare/ex2.jpg",
                "https://dropshare.blanchon.xyz/public/dropshare/ex2_result.png",
            ),
        ],
        [
            example3,
            # ("./examples/ex3.jpg", "./examples/ex3_result.png")
            (
                "https://dropshare.blanchon.xyz/public/dropshare/ex3.jpg",
                "https://dropshare.blanchon.xyz/public/dropshare/ex3_result.png",
            ),
        ],
        [
            example4,
            # ("./examples/ex4.jpg", "./examples/ex4_result.png")
            (
                "https://dropshare.blanchon.xyz/public/dropshare/ex4.jpg",
                "https://dropshare.blanchon.xyz/public/dropshare/ex4_result.png",
            ),
        ],
    ]

    # Update the gr.Examples call
    gr.Examples(
        examples=examples,
        inputs=[
            image_and_mask,
            image_slider,
        ],
        api_name=False,
    )

if __name__ == "__main__":
    demo.launch(
        debug=False,
        share=False,
        show_api=False,
    )