Spaces:
Running
Running
File size: 8,720 Bytes
9d1a9fc 0fd22de 9d1a9fc dc5a588 9d1a9fc dc5a588 9d1a9fc dc5a588 9d1a9fc dc5a588 9d1a9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from typing import cast
from comfydeploy import ComfyDeploy
import asyncio
import os
import gradio as gr
from gradio.components.image_editor import EditorValue
from PIL import Image
import requests
import dotenv
from gradio_imageslider import ImageSlider
from io import BytesIO
import base64
import glob
import numpy as np
dotenv.load_dotenv()
API_KEY = os.environ.get("API_KEY")
DEPLOYMENT_ID = os.environ.get("DEPLOYMENT_ID", "DEPLOYMENT_ID_NOT_SET")
if not API_KEY:
raise ValueError(
"Please set API_KEY and DEPLOYMENT_ID in your environment variables"
)
if DEPLOYMENT_ID == "DEPLOYMENT_ID_NOT_SET":
raise ValueError("Please set DEPLOYMENT_ID in your environment variables")
client = ComfyDeploy(bearer_auth=API_KEY)
def get_base64_from_image(image: Image.Image) -> str:
buffered: BytesIO = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
async def process_image(
image: Image.Image | str | None,
mask: Image.Image | str | None,
progress: gr.Progress = gr.Progress(),
) -> Image.Image | None:
progress(0, desc="Starting...")
if image is None or mask is None:
return None
if isinstance(mask, str):
mask = Image.open(mask)
if isinstance(image, str):
image = Image.open(image)
image_base64 = get_base64_from_image(image)
mask_base64 = get_base64_from_image(mask)
# Prepare inputs
inputs: dict = {
"image": f"data:image/png;base64,{image_base64}",
"mask": f"data:image/png;base64,{mask_base64}",
}
# Call ComfyDeploy API
try:
result = client.run.create(
request={"deployment_id": DEPLOYMENT_ID, "inputs": inputs}
)
if result and result.object:
run_id: str = result.object.run_id
progress(0, desc="Starting processing...")
# Wait for the result
while True:
run_result = client.run.get(run_id=run_id)
if not run_result.object:
continue
progress_value = (
run_result.object.progress
if run_result.object.progress is not None
else 0
)
status = (
run_result.object.live_status
if run_result.object.live_status is not None
else "Cold starting..."
)
progress(progress_value, desc=f"Status: {status}")
if run_result.object.status == "success":
for output in run_result.object.outputs or []:
if output.data and output.data.images:
image_url: str = output.data.images[0].url
# Download and return both the original and processed images
response: requests.Response = requests.get(image_url)
processed_image: Image.Image = Image.open(
BytesIO(response.content)
)
return processed_image
return None
elif run_result.object.status == "failed":
print("Processing failed")
return None
await asyncio.sleep(2) # Wait for 2 seconds before checking again
except Exception as e:
print(f"Error: {e}")
return None
def resize(image: Image.Image, shortest_side: int = 768) -> Image.Image:
if image.width <= shortest_side and image.height <= shortest_side:
return image
if image.width < image.height:
return image.resize(
size=(shortest_side, int(shortest_side * image.height / image.width))
)
return image.resize(
size=(int(shortest_side * image.width / image.height), shortest_side)
)
async def run_async(
image_and_mask: EditorValue | None,
progress: gr.Progress = gr.Progress(),
) -> tuple[Image.Image, Image.Image] | None:
if not image_and_mask:
return None
alpha_channel = image_and_mask["layers"][0]
alpha_channel = cast(np.ndarray, alpha_channel)
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
image_np = image_and_mask["background"]
image_np = cast(np.ndarray, image_np)
# Save mask to ./masks.png
mask = Image.fromarray(mask_np)
mask = resize(mask)
# mask.save("mask.png")
# Save image to ./images.png
image = Image.fromarray(image_np)
image = resize(image)
# image.save("image.png")
output = await process_image(
image, # type: ignore
mask, # type: ignore
progress,
)
if output is None:
return None
return output, image
def run_sync(*args):
return asyncio.run(run_async(*args))
with gr.Blocks() as demo:
gr.Markdown("""
# 🧹 Room Cleaner
Upload an image and and use pen tool (pencil icon at the bottom) to mark the areas you want to remove.
Click on the "Run" button to process the image and remove the marked areas.
""")
with gr.Row():
with gr.Column():
# The image overflow, fix
image_and_mask = gr.ImageMask(
label="Input Image and Mask",
layers=False,
show_fullscreen_button=False,
sources=["upload"],
show_download_button=False,
interactive=True,
height="full",
width="full",
)
with gr.Column():
image_slider = ImageSlider(
label="Compare Original and Processed",
interactive=False,
)
process_btn = gr.ClearButton(
value="Run",
variant="primary",
size="lg",
components=[image_slider],
)
process_btn.click(
fn=run_sync,
inputs=[
image_and_mask,
],
outputs=[image_slider],
api_name=False,
)
# Build examples
images_examples = glob.glob("examples/*")
mask_examples = [img.replace("inputs", "masks") for img in images_examples]
output_examples = [img.replace("inputs", "outputs") for img in images_examples]
# examples = [
# [
# img,
# mask,
# (img, out),
# ]
# for img, mask, out in zip(images_examples, mask_examples, output_examples)
# ]
examples = [
[
{
"background": "./examples/ex1.jpg",
"layers": [],
"composite": "./examples/ex1_mask.png",
},
# ("./examples/ex1.jpg", "./examples/ex1_result.png"),
(
"https://dropshare.blanchon.xyz/public/dropshare/ex1.jpg",
"https://dropshare.blanchon.xyz/public/dropshare/ex1_result.png",
),
],
[
{
"background": "./examples/ex2.jpg",
"layers": [],
"composite": "./examples/ex2_mask.png",
},
# ("./examples/ex2.jpg", "./examples/ex2_result.png"),
(
"https://dropshare.blanchon.xyz/public/dropshare/ex2.jpg",
"https://dropshare.blanchon.xyz/public/dropshare/ex2_result.png",
),
],
[
{
"background": "./examples/ex3.jpg",
"layers": [],
"composite": "./examples/ex3_mask.png",
},
# ("./examples/ex3.jpg", "./examples/ex3_result.png"),
(
"https://dropshare.blanchon.xyz/public/dropshare/ex3.jpg",
"https://dropshare.blanchon.xyz/public/dropshare/ex3_result.png",
),
],
[
{
"background": "./examples/ex4.jpg",
"layers": [],
"composite": "./examples/ex4_mask.png",
},
# ("./examples/ex4.jpg", "./examples/ex4_result.png"),
(
"https://dropshare.blanchon.xyz/public/dropshare/ex4.jpg",
"https://dropshare.blanchon.xyz/public/dropshare/ex4_result.png",
),
],
]
# Update the gr.Examples call
gr.Examples(
examples=examples,
inputs=[
image_and_mask,
image_slider,
],
api_name=False,
)
if __name__ == "__main__":
demo.launch(debug=True, share=True)
|