HashamUllah commited on
Commit
f9e98b8
1 Parent(s): 4f77f85

Upload 4 files

Browse files
Files changed (4) hide show
  1. app1.py +50 -0
  2. categories.json +40 -0
  3. plant_disease_detection.h5 +3 -0
  4. temp_image.jpg +0 -0
app1.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile, HTTPException
2
+ from fastapi.responses import JSONResponse
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ from PIL import Image
6
+ import io
7
+ import json
8
+
9
+ app = FastAPI()
10
+
11
+ # Load the TensorFlow model
12
+ model = tf.keras.models.load_model('./plant_disease_detection.h5')
13
+
14
+ # Load categories
15
+ with open('./categories.json') as f:
16
+ categories = json.load(f)
17
+
18
+ def preprocess_image(image_bytes):
19
+ # Convert the image to a NumPy array
20
+ image = Image.open(io.BytesIO(image_bytes))
21
+ image = image.resize((224, 224)) # Adjust size as needed
22
+ image_array = np.array(image) / 255.0 # Normalize to [0, 1]
23
+ image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
24
+ return image_array
25
+
26
+ @app.post('/predict')
27
+ async def predict(file: UploadFile = File(...)):
28
+ if file.content_type.startswith('image/') is False:
29
+ raise HTTPException(status_code=400, detail='Invalid file type')
30
+
31
+ image_bytes = await file.read()
32
+ image_array = preprocess_image(image_bytes)
33
+
34
+ # Make prediction
35
+ predictions = model.predict(image_array)
36
+ predicted_class = np.argmax(predictions, axis=1)[0]
37
+
38
+ # Map to category names
39
+ predicted_label = categories.get(str(predicted_class), 'Unknown')
40
+
41
+ return JSONResponse(content={
42
+ 'class': predicted_label,
43
+ 'confidence': float(predictions[0][predicted_class])
44
+ })
45
+
46
+
47
+ if __name__ == '__main__':
48
+ import uvicorn
49
+ uvicorn.run(app, host='0.0.0.0', port=8080)
50
+
categories.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "0": "Apple___Apple_scab",
3
+ "1": "Apple___Black_rot",
4
+ "2": "Apple___Cedar_apple_rust",
5
+ "3": "Apple___healthy",
6
+ "4": "Blueberry___healthy",
7
+ "5": "Cherry_(including_sour)___Powdery_mildew",
8
+ "6": "Cherry_(including_sour)___healthy",
9
+ "7": "Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot",
10
+ "8": "Corn_(maize)___Common_rust_",
11
+ "9": "Corn_(maize)___Northern_Leaf_Blight",
12
+ "10": "Corn_(maize)___healthy",
13
+ "11": "Grape___Black_rot",
14
+ "12": "Grape___Esca_(Black_Measles)",
15
+ "13": "Grape___Leaf_blight_(Isariopsis_Leaf_Spot)",
16
+ "14": "Grape___healthy",
17
+ "15": "Orange___Haunglongbing_(Citrus_greening)",
18
+ "16": "Peach___Bacterial_spot",
19
+ "17": "Peach___healthy",
20
+ "18": "Pepper,_bell___Bacterial_spot",
21
+ "19": "Pepper,_bell___healthy",
22
+ "20": "Potato___Early_blight",
23
+ "21": "Potato___Late_blight",
24
+ "22": "Potato___healthy",
25
+ "23": "Raspberry___healthy",
26
+ "24": "Soybean___healthy",
27
+ "25": "Squash___Powdery_mildew",
28
+ "26": "Strawberry___Leaf_scorch",
29
+ "27": "Strawberry___healthy",
30
+ "28": "Tomato___Bacterial_spot",
31
+ "29": "Tomato___Early_blight",
32
+ "30": "Tomato___Late_blight",
33
+ "31": "Tomato___Leaf_Mold",
34
+ "32": "Tomato___Septoria_leaf_spot",
35
+ "33": "Tomato___Spider_mites Two-spotted_spider_mite",
36
+ "34": "Tomato___Target_Spot",
37
+ "35": "Tomato___Tomato_Yellow_Leaf_Curl_Virus",
38
+ "36": "Tomato___Tomato_mosaic_virus",
39
+ "37": "Tomato___healthy"
40
+ }
plant_disease_detection.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d762c7af973c2e146345f7e7a891b371f48b5ea8c5f16dffbb939eb832d3d21d
3
+ size 9947768
temp_image.jpg ADDED