Spaces:
Runtime error
Runtime error
HashamUllah
commited on
Commit
•
347d632
1
Parent(s):
d3c66f0
Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,16 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
-
import io
|
6 |
import json
|
7 |
|
8 |
# Load the TensorFlow model
|
9 |
-
model = tf.keras.models.load_model('
|
10 |
|
11 |
# Load categories
|
12 |
with open('categories.json') as f:
|
13 |
categories = json.load(f)
|
14 |
|
15 |
def preprocess_image(image):
|
16 |
-
# Convert the image to a NumPy array
|
17 |
image = image.resize((224, 224)) # Adjust size as needed
|
18 |
image_array = np.array(image) / 255.0 # Normalize to [0, 1]
|
19 |
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
@@ -21,17 +19,11 @@ def preprocess_image(image):
|
|
21 |
|
22 |
def predict(image):
|
23 |
image_array = preprocess_image(image)
|
24 |
-
|
25 |
-
# Make prediction
|
26 |
predictions = model.predict(image_array)
|
27 |
predicted_class = np.argmax(predictions, axis=1)[0]
|
28 |
-
|
29 |
-
# Map to category names
|
30 |
predicted_label = categories.get(str(predicted_class), 'Unknown')
|
31 |
-
|
32 |
return predicted_label, float(predictions[0][predicted_class])
|
33 |
|
34 |
-
# Create a Gradio interface
|
35 |
iface = gr.Interface(
|
36 |
fn=predict,
|
37 |
inputs=gr.Image(type="pil"),
|
@@ -40,6 +32,5 @@ iface = gr.Interface(
|
|
40 |
description="Upload an image of a plant leaf to detect if it has any diseases."
|
41 |
)
|
42 |
|
43 |
-
# Launch the interface
|
44 |
if __name__ == "__main__":
|
45 |
iface.launch()
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
|
|
5 |
import json
|
6 |
|
7 |
# Load the TensorFlow model
|
8 |
+
model = tf.keras.models.load_model('plant_disease_detection_compatible.h5')
|
9 |
|
10 |
# Load categories
|
11 |
with open('categories.json') as f:
|
12 |
categories = json.load(f)
|
13 |
|
14 |
def preprocess_image(image):
|
|
|
15 |
image = image.resize((224, 224)) # Adjust size as needed
|
16 |
image_array = np.array(image) / 255.0 # Normalize to [0, 1]
|
17 |
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
|
|
19 |
|
20 |
def predict(image):
|
21 |
image_array = preprocess_image(image)
|
|
|
|
|
22 |
predictions = model.predict(image_array)
|
23 |
predicted_class = np.argmax(predictions, axis=1)[0]
|
|
|
|
|
24 |
predicted_label = categories.get(str(predicted_class), 'Unknown')
|
|
|
25 |
return predicted_label, float(predictions[0][predicted_class])
|
26 |
|
|
|
27 |
iface = gr.Interface(
|
28 |
fn=predict,
|
29 |
inputs=gr.Image(type="pil"),
|
|
|
32 |
description="Upload an image of a plant leaf to detect if it has any diseases."
|
33 |
)
|
34 |
|
|
|
35 |
if __name__ == "__main__":
|
36 |
iface.launch()
|