new-check / app.py
HashamUllah's picture
Update app.py
9650572 verified
raw
history blame
1.28 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import io
import json
# Load the TensorFlow model
model = tf.keras.models.load_model('./plant_disease_detection.h5')
# Load categories
with open('./categories.json') as f:
categories = json.load(f)
def preprocess_image(image):
# Convert the image to a NumPy array
image = image.resize((224, 224)) # Adjust size as needed
image_array = np.array(image) / 255.0 # Normalize to [0, 1]
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
return image_array
def predict(image):
image_array = preprocess_image(image)
# Make prediction
predictions = model.predict(image_array)
predicted_class = np.argmax(predictions, axis=1)[0]
# Map to category names
predicted_label = categories.get(str(predicted_class), 'Unknown')
return predicted_label, float(predictions[0][predicted_class])
# Create a Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(), gr.Number()],
title="Plant Disease Detection",
description="Upload an image of a plant leaf to detect if it has any diseases."
)
# Launch the interface
if __name__ == "__main__":
iface.launch()