Spaces:
Runtime error
Runtime error
HashamUllah
commited on
Commit
•
8cfdcf9
1
Parent(s):
1c2ca15
Upload 7 files
Browse files- ReadMe.txt +6 -0
- cnn_model.h5 +3 -0
- crop_image.jpg +0 -0
- crop_image1.jpg +0 -0
- crop_image2.jpg +0 -0
- label_transform.pkl +3 -0
- main.py +83 -0
ReadMe.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- cnn_model.h5 and label_transform.pkl is Model File.
|
2 |
+
|
3 |
+
- main.py is to needed to run to start the server.
|
4 |
+
- in main.py, "/test-predict" is for testing purpose, "/predict" endpoint is for uploading image.
|
5 |
+
- "/test-predict" endpoint contains image picked from the same folder.
|
6 |
+
- after starting the server, call "http://0.0.0.0:8000/test-predict"in browser to test the prediction on the image.
|
cnn_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68953b84edbf58393bdb203c7a08062d4367382883025f5b729d607e968cffeb
|
3 |
+
size 697340252
|
crop_image.jpg
ADDED
crop_image1.jpg
ADDED
crop_image2.jpg
ADDED
label_transform.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1322197d23b302375c2f8a75a8e6954375a2241af686fa40d02be8f4f1bd07b
|
3 |
+
size 2906
|
main.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import pickle
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
print("app run")
|
12 |
+
# Load the model and the label binarizer
|
13 |
+
model = load_model('cnn_model.h5')
|
14 |
+
print("model loaded")
|
15 |
+
label_binarizer = pickle.load(open('label_transform.pkl', 'rb'))
|
16 |
+
print("labels loaded")
|
17 |
+
|
18 |
+
# Function to convert images to array
|
19 |
+
def convert_image_to_array(image_dir):
|
20 |
+
try:
|
21 |
+
image = cv2.imdecode(np.frombuffer(image_dir, np.uint8), cv2.IMREAD_COLOR)
|
22 |
+
if image is not None:
|
23 |
+
image = cv2.resize(image, (256, 256))
|
24 |
+
return img_to_array(image)
|
25 |
+
else:
|
26 |
+
return np.array([])
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error : {e}")
|
29 |
+
return None
|
30 |
+
|
31 |
+
@app.post("/predict")
|
32 |
+
async def predict(file: UploadFile = File(...)):
|
33 |
+
try:
|
34 |
+
# Read the file and convert it to an array
|
35 |
+
image_data = await file.read()
|
36 |
+
image_array = convert_image_to_array(image_data)
|
37 |
+
|
38 |
+
if image_array.size == 0:
|
39 |
+
return JSONResponse(content={"error": "Invalid image"}, status_code=400)
|
40 |
+
|
41 |
+
# Normalize the image
|
42 |
+
image_array = np.array(image_array, dtype=np.float16) / 255.0
|
43 |
+
|
44 |
+
# Ensure the image_array has the correct shape (1, 256, 256, 3)
|
45 |
+
image_array = np.expand_dims(image_array, axis=0)
|
46 |
+
|
47 |
+
# Make a prediction
|
48 |
+
prediction = model.predict(image_array)
|
49 |
+
predicted_class = label_binarizer.inverse_transform(prediction)[0]
|
50 |
+
|
51 |
+
return {"prediction": predicted_class}
|
52 |
+
except Exception as e:
|
53 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
54 |
+
|
55 |
+
# Add a test GET endpoint to manually trigger the prediction
|
56 |
+
@app.get("/test-predict")
|
57 |
+
def test_predict():
|
58 |
+
try:
|
59 |
+
image_path = 'crop_image1.jpg'
|
60 |
+
image = cv2.imread(image_path)
|
61 |
+
image_array = cv2.resize(image, (256, 256))
|
62 |
+
image_array = img_to_array(image_array)
|
63 |
+
|
64 |
+
if image_array.size == 0:
|
65 |
+
return JSONResponse(content={"error": "Invalid image"}, status_code=400)
|
66 |
+
|
67 |
+
# Normalize the image
|
68 |
+
image_array = np.array(image_array, dtype=np.float16) / 255.0
|
69 |
+
|
70 |
+
# Ensure the image_array has the correct shape (1, 256, 256, 3)
|
71 |
+
image_array = np.expand_dims(image_array, axis=0)
|
72 |
+
|
73 |
+
# Make a prediction
|
74 |
+
prediction = model.predict(image_array)
|
75 |
+
predicted_class = label_binarizer.inverse_transform(prediction)[0]
|
76 |
+
|
77 |
+
return {"prediction": predicted_class}
|
78 |
+
except Exception as e:
|
79 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
import uvicorn
|
83 |
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|