Spaces:
Runtime error
Runtime error
File size: 14,763 Bytes
74fc30d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
"""Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text.
Unlike the original BPE, it does not compress the plain text, but can be used to reduce the vocabulary
of a text to a configurable number of symbols, with only a small increase in the number of tokens.
Reference:
Rico Sennrich, Barry Haddow and Alexandra Birch (2016). Neural Machine Translation of Rare Words with Subword Units.
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.
"""
from __future__ import unicode_literals
import os
import sys
import inspect
import codecs
import re
import copy
import argparse
import warnings
import tempfile
from multiprocessing import Pool, cpu_count
from collections import defaultdict, Counter
try:
from tqdm import tqdm
except ImportError:
def tqdm(iterator, *args, **kwargs):
return iterator
# hack for python2/3 compatibility
from io import open
argparse.open = open
def create_parser(subparsers=None):
if subparsers:
parser = subparsers.add_parser('learn-bpe',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
else:
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
metavar='PATH',
help="Input text (default: standard input).")
parser.add_argument(
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
metavar='PATH',
help="Output file for BPE codes (default: standard output)")
parser.add_argument(
'--symbols', '-s', type=int, default=10000,
help="Create this many new symbols (each representing a character n-gram) (default: %(default)s)")
parser.add_argument(
'--min-frequency', type=int, default=2, metavar='FREQ',
help='Stop if no symbol pair has frequency >= FREQ (default: %(default)s)')
parser.add_argument('--dict-input', action="store_true",
help="If set, input file is interpreted as a dictionary where each line contains a word-count pair")
parser.add_argument(
'--total-symbols', '-t', action="store_true",
help="subtract number of characters from the symbols to be generated (so that '--symbols' becomes an estimate for the total number of symbols needed to encode text).")
parser.add_argument(
'--num-workers', type=int, default=1,
help="Number of processors to process texts, only supported in Python3. If -1, set `multiprocessing.cpu_count()`. (default: %(default)s)")
parser.add_argument(
'--verbose', '-v', action="store_true",
help="verbose mode.")
return parser
def get_vocabulary(fobj, is_dict=False, num_workers=1):
"""Read text and return dictionary that encodes vocabulary
"""
vocab = Counter()
if is_dict:
for i, line in enumerate(fobj):
try:
word, count = line.strip('\r\n ').split(' ')
except:
print('Failed reading vocabulary file at line {0}: {1}'.format(i, line))
sys.exit(1)
vocab[word] += int(count)
elif num_workers == 1 or fobj.name == '<stdin>':
if num_workers > 1:
warnings.warn("In parallel mode, the input cannot be STDIN. Using 1 processor instead.")
for i, line in enumerate(fobj):
for word in line.strip('\r\n ').split(' '):
if word:
vocab[word] += 1
elif num_workers > 1:
if sys.version_info < (3, 0):
print("Parallel mode is only supported in Python3.")
sys.exit(1)
with open(fobj.name, encoding="utf8") as f:
size = os.fstat(f.fileno()).st_size
chunk_size = int(size / num_workers)
offsets = [0 for _ in range(num_workers + 1)]
for i in range(1, num_workers):
f.seek(chunk_size * i)
pos = f.tell()
while True:
try:
line = f.readline()
break
except UnicodeDecodeError:
pos -= 1
f.seek(pos)
offsets[i] = f.tell()
assert 0 <= offsets[i] < 1e20, "Bad new line separator, e.g. '\\r'"
vocab_files = []
pool = Pool(processes=num_workers)
for i in range(num_workers):
tmp = tempfile.NamedTemporaryFile(delete=False)
tmp.close()
vocab_files.append(tmp)
pool.apply_async(_get_vocabulary, (fobj.name, tmp.name, offsets[i], offsets[i + 1]))
pool.close()
pool.join()
import pickle
for i in range(num_workers):
with open(vocab_files[i].name, 'rb') as f:
vocab += pickle.load(f)
os.remove(vocab_files[i].name)
else:
raise ValueError('`num_workers` is expected to be a positive number, but got {}.'.format(num_workers))
return vocab
def _get_vocabulary(infile, outfile, begin, end):
import pickle
vocab = Counter()
with open(infile, encoding="utf8") as f:
f.seek(begin)
line = f.readline()
while line:
pos = f.tell()
assert 0 <= pos < 1e20, "Bad new line separator, e.g. '\\r'"
if end > 0 and pos > end:
break
for word in line.strip('\r\n ').split(' '):
if word:
vocab[word] += 1
line = f.readline()
with open(outfile, 'wb') as f:
pickle.dump(vocab, f)
def update_pair_statistics(pair, changed, stats, indices):
"""Minimally update the indices and frequency of symbol pairs
if we merge a pair of symbols, only pairs that overlap with occurrences
of this pair are affected, and need to be updated.
"""
stats[pair] = 0
indices[pair] = defaultdict(int)
first, second = pair
new_pair = first+second
for j, word, old_word, freq in changed:
# find all instances of pair, and update frequency/indices around it
i = 0
while True:
# find first symbol
try:
i = old_word.index(first, i)
except ValueError:
break
# if first symbol is followed by second symbol, we've found an occurrence of pair (old_word[i:i+2])
if i < len(old_word)-1 and old_word[i+1] == second:
# assuming a symbol sequence "A B C", if "B C" is merged, reduce the frequency of "A B"
if i:
prev = old_word[i-1:i+1]
stats[prev] -= freq
indices[prev][j] -= 1
if i < len(old_word)-2:
# assuming a symbol sequence "A B C B", if "B C" is merged, reduce the frequency of "C B".
# however, skip this if the sequence is A B C B C, because the frequency of "C B" will be reduced by the previous code block
if old_word[i+2] != first or i >= len(old_word)-3 or old_word[i+3] != second:
nex = old_word[i+1:i+3]
stats[nex] -= freq
indices[nex][j] -= 1
i += 2
else:
i += 1
i = 0
while True:
try:
# find new pair
i = word.index(new_pair, i)
except ValueError:
break
# assuming a symbol sequence "A BC D", if "B C" is merged, increase the frequency of "A BC"
if i:
prev = word[i-1:i+1]
stats[prev] += freq
indices[prev][j] += 1
# assuming a symbol sequence "A BC B", if "B C" is merged, increase the frequency of "BC B"
# however, if the sequence is A BC BC, skip this step because the count of "BC BC" will be incremented by the previous code block
if i < len(word)-1 and word[i+1] != new_pair:
nex = word[i:i+2]
stats[nex] += freq
indices[nex][j] += 1
i += 1
def get_pair_statistics(vocab):
"""Count frequency of all symbol pairs, and create index"""
# data structure of pair frequencies
stats = defaultdict(int)
#index from pairs to words
indices = defaultdict(lambda: defaultdict(int))
for i, (word, freq) in enumerate(vocab):
prev_char = word[0]
for char in word[1:]:
stats[prev_char, char] += freq
indices[prev_char, char][i] += 1
prev_char = char
return stats, indices
def replace_pair(pair, vocab, indices):
"""Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'"""
first, second = pair
pair_str = ''.join(pair)
pair_str = pair_str.replace('\\','\\\\')
changes = []
pattern = re.compile(r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)')
if sys.version_info < (3, 0):
iterator = indices[pair].iteritems()
else:
iterator = indices[pair].items()
for j, freq in iterator:
if freq < 1:
continue
word, freq = vocab[j]
new_word = ' '.join(word)
new_word = pattern.sub(pair_str, new_word)
new_word = tuple(new_word.split(' '))
vocab[j] = (new_word, freq)
changes.append((j, new_word, word, freq))
return changes
def prune_stats(stats, big_stats, threshold):
"""Prune statistics dict for efficiency of max()
The frequency of a symbol pair never increases, so pruning is generally safe
(until we the most frequent pair is less frequent than a pair we previously pruned)
big_stats keeps full statistics for when we need to access pruned items
"""
for item,freq in list(stats.items()):
if freq < threshold:
del stats[item]
if freq < 0:
big_stats[item] += freq
else:
big_stats[item] = freq
def learn_bpe(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False, total_symbols=False, num_workers=1):
"""Learn num_symbols BPE operations from vocabulary, and write to outfile.
"""
# version 0.2 changes the handling of the end-of-word token ('</w>');
# version numbering allows bckward compatibility
outfile.write('#version: 0.2\n')
vocab = get_vocabulary(infile, is_dict, num_workers)
vocab = dict([(tuple(x[:-1])+(x[-1]+'</w>',) ,y) for (x,y) in vocab.items()])
sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True)
stats, indices = get_pair_statistics(sorted_vocab)
big_stats = copy.deepcopy(stats)
if total_symbols:
uniq_char_internal = set()
uniq_char_final = set()
for word in vocab:
for char in word[:-1]:
uniq_char_internal.add(char)
uniq_char_final.add(word[-1])
sys.stderr.write('Number of word-internal characters: {0}\n'.format(len(uniq_char_internal)))
sys.stderr.write('Number of word-final characters: {0}\n'.format(len(uniq_char_final)))
sys.stderr.write('Reducing number of merge operations by {0}\n'.format(len(uniq_char_internal) + len(uniq_char_final)))
num_symbols -= len(uniq_char_internal) + len(uniq_char_final)
# threshold is inspired by Zipfian assumption, but should only affect speed
threshold = max(stats.values()) / 10
for i in tqdm(range(num_symbols)):
if stats:
most_frequent = max(stats, key=lambda x: (stats[x], x))
# we probably missed the best pair because of pruning; go back to full statistics
if not stats or (i and stats[most_frequent] < threshold):
prune_stats(stats, big_stats, threshold)
stats = copy.deepcopy(big_stats)
most_frequent = max(stats, key=lambda x: (stats[x], x))
# threshold is inspired by Zipfian assumption, but should only affect speed
threshold = stats[most_frequent] * i/(i+10000.0)
prune_stats(stats, big_stats, threshold)
if stats[most_frequent] < min_frequency:
sys.stderr.write('no pair has frequency >= {0}. Stopping\n'.format(min_frequency))
break
if verbose:
sys.stderr.write('pair {0}: {1} {2} -> {1}{2} (frequency {3})\n'.format(i, most_frequent[0], most_frequent[1], stats[most_frequent]))
outfile.write('{0} {1}\n'.format(*most_frequent))
changes = replace_pair(most_frequent, sorted_vocab, indices)
update_pair_statistics(most_frequent, changes, stats, indices)
stats[most_frequent] = 0
if not i % 100:
prune_stats(stats, big_stats, threshold)
if __name__ == '__main__':
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
newdir = os.path.join(currentdir, 'subword_nmt')
if os.path.isdir(newdir):
warnings.simplefilter('default')
warnings.warn(
"this script's location has moved to {0}. This symbolic link will be removed in a future version. Please point to the new location, or install the package and use the command 'subword-nmt'".format(newdir),
DeprecationWarning
)
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
parser = create_parser()
args = parser.parse_args()
if args.num_workers <= 0:
args.num_workers = cpu_count()
if sys.version_info < (3, 0) and args.num_workers > 1:
args.num_workers = 1
warnings.warn("Parallel mode is only supported in Python3. Using 1 processor instead.")
# read/write files as UTF-8
if args.input.name != '<stdin>':
args.input = codecs.open(args.input.name, encoding='utf-8')
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
learn_bpe(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input, total_symbols=args.total_symbols, num_workers=args.num_workers)
|