File size: 8,688 Bytes
42e5d6f
 
 
 
 
 
 
 
 
6fb3a53
 
42e5d6f
 
 
 
6fb3a53
 
d5d7dd6
 
42e5d6f
 
 
 
 
 
 
 
 
6fb3a53
42e5d6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb3a53
42e5d6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import * as webllm from "https://esm.run/@mlc-ai/web-llm";

const messages = [
  {
    content: "You are a helpful AI agent assisting users. And your name is 'Kanha'",
    role: "system",
  },
];

const modelLibURLPrefix = "https://huggingface.co/Kanha-AI/";
const modelVersion = "llama-3.2-1b-test_200steps_bs1_r0_lr2e-06_nq-q4f16_1-MLC";

const appConfig = {
  model_list: [
    {
      model: "https://huggingface.co/Kanha-AI/llama-3.2-1b-test_200steps_bs1_r0_lr2e-06_nq-q4f16_1-MLC",
      model_id: "llama-3.2-1b-test_200steps_bs1_r0_lr2e-06_nq-q4f16_1-MLC",
      model_lib:
        webllm.modelLibURLPrefix + webllm.modelVersion + "/Llama-3.2-1B-Instruct-q4f16_1-ctx4k_cs1k-webgpu.wasm",
      vram_required_MB: 3672.07,
      low_resource_required: false,
      overrides: {
        context_window_size: 4096,
      },
    },
  ],
};

let selectedModel = "llama-3.2-1b-test_200steps_bs1_r0_lr2e-06_nq-q4f16_1-MLC";
let engine = null;
let isInitializing = false;

async function createEngine() {
  if (engine) return engine;
  
  engine = await webllm.CreateMLCEngine(selectedModel, { appConfig: appConfig });
  engine.setInitProgressCallback(updateEngineInitProgressCallback);
  return engine;
}

function updateEngineInitProgressCallback(report) {
  console.log("initialize", report.progress);
  const statusElement = document.getElementById("download-status");
  statusElement.textContent = report.text;
  statusElement.classList.remove("hidden");
  
  const progressBar = document.getElementById("progress-bar");
  progressBar.style.width = `${report.progress * 100}%`;
}

function getPlatform() {
  const userAgent = navigator.userAgent || navigator.vendor || window.opera;
  if (/android/i.test(userAgent)) {
    return "Android";
  }
  if (/iPad|iPhone|iPod/.test(userAgent) && !window.MSStream) {
    return "iOS";
  }
  return "Other";
}

function getWebGPUInstructions(platform) {
  switch (platform) {
    case "Android":
      return "To enable WebGPU on Android:\n1. Go to chrome://flags\n2. Enable 'WebGPU Developer Features' and 'Unsafe WebGPU Support'\n3. Restart your browser";
    case "iOS":
      return "To enable WebGPU on iOS:\n1. Open Settings\n2. Tap Safari\n3. Tap Advanced\n4. Tap Feature Flags\n5. Turn on WebGPU";
    default:
      return "WebGPU might not be supported on your device. Please check if your browser is up to date.";
  }
}

async function checkWebGPUSupport() {
  if (!navigator.gpu) {
    const platform = getPlatform();
    const instructions = getWebGPUInstructions(platform);
    throw new Error(`WebGPU is not supported in this browser. ${instructions}`);
  }
  const adapter = await navigator.gpu.requestAdapter();
  if (!adapter) {
    throw new Error("Couldn't request WebGPU adapter. Please make sure WebGPU is enabled on your device.");
  }
  const device = await adapter.requestDevice();
  if (!device) {
    throw new Error("Couldn't request WebGPU device. Please make sure WebGPU is enabled on your device.");
  }
  return true;
}

async function checkRAM() {
  if (!navigator.deviceMemory) {
    console.warn("Device memory information is not available.");
    return true; // Assume it's okay if we can't check
  }
  const ramGB = navigator.deviceMemory;
  if (ramGB < 3) {
    throw new Error(`Insufficient RAM. Required: 2GB Free RAM, Available: ${ramGB}GB`);
  }
  return true;
}

async function initializeWebLLMEngine() {
  if (isInitializing) return;
  isInitializing = true;

  const progressContainer = document.getElementById("progress-container");
  const statusElement = document.getElementById("download-status");
  
  try {
    // Check system requirements
    await checkRAM();
    await checkWebGPUSupport();

    progressContainer.classList.remove("hidden");
    statusElement.classList.remove("hidden");
    
    selectedModel = "llama-3.2-1b-test_200steps_bs1_r0_lr2e-06_nq-q4f16_1-MLC"; // Using the default model
    const config = {
      temperature: 1.0,
      top_p: 1,
    };
    
    const engine = await createEngine();
    await engine.reload(selectedModel, config);

    statusElement.textContent = "Model initialized successfully!";
  } catch (error) {
    console.error("Error initializing WebLLM engine:", error);
    statusElement.textContent = `Error initializing: ${error.message}\n\nFor more information and troubleshooting, please visit kanha.ai/faq`;
    statusElement.classList.remove("hidden");
    throw error; // Re-throw the error to be caught in onMessageSend
  } finally {
    progressContainer.classList.add("hidden");
    isInitializing = false;
  }
}

async function streamingGenerating(messages, onUpdate, onFinish, onError) {
  try {
    let curMessage = "";
    let usage;
    const engine = await createEngine();
    const completion = await engine.chat.completions.create({
      stream: true,
      messages,
      stream_options: { include_usage: true },
    });
    for await (const chunk of completion) {
      const curDelta = chunk.choices[0]?.delta.content;
      if (curDelta) {
        curMessage += curDelta;
      }
      if (chunk.usage) {
        usage = chunk.usage;
      }
      onUpdate(curMessage);
    }
    const finalMessage = await engine.getMessage();
    onFinish(finalMessage, usage);
  } catch (err) {
    onError(err);
  }
}

async function onMessageSend() {
  const input = document.getElementById("user-input");
  const sendButton = document.getElementById("send");
  const message = {
    content: input.value.trim(),
    role: "user",
  };
  if (message.content.length === 0) {
    return;
  }
  sendButton.disabled = true;
  sendButton.innerHTML = '<i class="fas fa-spinner fa-spin"></i>';

  messages.push(message);
  appendMessage(message);

  input.value = "";
  input.setAttribute("placeholder", "AI is thinking...");

  const aiMessage = {
    content: "typing...",
    role: "assistant",
  };
  appendMessage(aiMessage);

  try {
    if (!engine) {
      await initializeWebLLMEngine();
    }

    const onFinishGenerating = (finalMessage, usage) => {
      updateLastMessage(finalMessage);
      sendButton.disabled = false;
      sendButton.innerHTML = '<i class="fas fa-paper-plane"></i>';
      input.setAttribute("placeholder", "Type your message here...");
      if (usage) {
        const usageText =
          `Prompt tokens: ${usage.prompt_tokens}, ` +
          `Completion tokens: ${usage.completion_tokens}, ` +
          `Prefill: ${usage.extra.prefill_tokens_per_s.toFixed(2)} tokens/sec, ` +
          `Decoding: ${usage.extra.decode_tokens_per_s.toFixed(2)} tokens/sec`;
        document.getElementById("chat-stats").classList.remove("hidden");
        document.getElementById("chat-stats").textContent = usageText;
      }
    };

    await streamingGenerating(
      messages,
      updateLastMessage,
      onFinishGenerating,
      onError
    );
  } catch (error) {
    onError(error);
    // Update the AI message to show the error
    updateLastMessage("I'm sorry, but I encountered an error: " + error.message);
  }
}

function appendMessage(message) {
  const chatBox = document.getElementById("chat-box");
  const messageElement = document.createElement("div");
  messageElement.classList.add("message");

  if (message.role === "user") {
    messageElement.classList.add("user-message");
    messageElement.textContent = message.content;
  } else {
    messageElement.classList.add("assistant-message");
    if (message.content === "typing...") {
      messageElement.classList.add("typing");
      messageElement.textContent = message.content;
    } else {
      messageElement.innerHTML = marked.parse(message.content);
    }
  }

  chatBox.appendChild(messageElement);
  chatBox.scrollTop = chatBox.scrollHeight;
}

function updateLastMessage(content) {
  const chatBox = document.getElementById("chat-box");
  const messages = chatBox.getElementsByClassName("message");
  const lastMessage = messages[messages.length - 1];
  lastMessage.innerHTML = marked.parse(content);
  lastMessage.classList.remove("typing");
}

function onError(err) {
  console.error(err);
  const statusElement = document.getElementById("download-status");
  statusElement.textContent = `Error: ${err.message}\n\nFor more information and troubleshooting, please visit kanha.ai/faq`;
  statusElement.classList.remove("hidden");
  document.getElementById("send").disabled = false;
  document.getElementById("send").innerHTML = '<i class="fas fa-paper-plane"></i>';
}

// UI binding
document.getElementById("send").addEventListener("click", onMessageSend);
document.getElementById("user-input").addEventListener("keypress", function(event) {
  if (event.key === "Enter") {
    event.preventDefault();
    onMessageSend();
  }
});