Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_tags import st_tags, st_tags_sidebar | |
from keytotext import pipeline | |
from PIL import Image | |
import json | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
import gzip | |
import os | |
import torch | |
import pickle | |
############ | |
## Main page | |
############ | |
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)") | |
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***") | |
image = Image.open('top.png') | |
st.image(image) | |
st.sidebar.write("# Top-N Selection") | |
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk') | |
#user_query = st_tags( | |
# label='# Enter Query:', | |
# text='Press enter to add more', | |
# value=['Mother'], | |
# suggestions=['gift', 'nike', 'wool'], | |
# maxtags=maxtags_sidebar, | |
# key="aljnf") | |
user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...") | |
# Add selectbox in streamlit | |
option1 = st.sidebar.selectbox( | |
'Which transformers model would you like to be selected?', | |
('multi-qa-MiniLM-L6-cos-v1','null','null')) | |
option2 = st.sidebar.selectbox( | |
'Which corss-encoder model would you like to be selected?', | |
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null')) | |
st.sidebar.success("Load Successfully!") | |
#if not torch.cuda.is_available(): | |
# print("Warning: No GPU found. Please add GPU to your notebook") | |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search | |
bi_encoder = SentenceTransformer(option1,device='cpu') | |
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens | |
top_k = 32 #Number of passages we want to retrieve with the bi-encoder | |
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality | |
cross_encoder = CrossEncoder(option2, device='cpu') | |
passages = [] | |
# load pre-train embeedings files | |
embedding_cache_path = 'etsy-embeddings-cpu.pkl' | |
print("Load pre-computed embeddings from disc") | |
with open(embedding_cache_path, "rb") as fIn: | |
cache_data = pickle.load(fIn) | |
passages = cache_data['sentences'] | |
corpus_embeddings = cache_data['embeddings'] | |
from rank_bm25 import BM25Okapi | |
from sklearn.feature_extraction import _stop_words | |
import string | |
from tqdm.autonotebook import tqdm | |
import numpy as np | |
# We lower case our text and remove stop-words from indexing | |
def bm25_tokenizer(text): | |
tokenized_doc = [] | |
for token in text.lower().split(): | |
token = token.strip(string.punctuation) | |
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS: | |
tokenized_doc.append(token) | |
return tokenized_doc | |
tokenized_corpus = [] | |
for passage in tqdm(passages): | |
tokenized_corpus.append(bm25_tokenizer(passage)) | |
bm25 = BM25Okapi(tokenized_corpus) | |
# This function will search all wikipedia articles for passages that | |
# answer the query | |
def search(query): | |
print("Input query:", query) | |
total_qe = [] | |
##### BM25 search (lexical search) ##### | |
bm25_scores = bm25.get_scores(bm25_tokenizer(query)) | |
top_n = np.argpartition(bm25_scores, -5)[-5:] | |
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n] | |
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True) | |
#print("Top-10 lexical search (BM25) hits") | |
qe_string = [] | |
for hit in bm25_hits[0:1000]: | |
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string: | |
qe_string.append(passages[hit['corpus_id']].replace("\n", "")) | |
sub_string = [] | |
for item in qe_string: | |
for sub_item in item.split(","): | |
sub_string.append(sub_item) | |
#print(sub_string) | |
total_qe.append(sub_string) | |
##### Sematic Search ##### | |
# Encode the query using the bi-encoder and find potentially relevant passages | |
query_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k) | |
hits = hits[0] # Get the hits for the first query | |
##### Re-Ranking ##### | |
# Now, score all retrieved passages with the cross_encoder | |
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits] | |
cross_scores = cross_encoder.predict(cross_inp) | |
# Sort results by the cross-encoder scores | |
for idx in range(len(cross_scores)): | |
hits[idx]['cross-score'] = cross_scores[idx] | |
# Output of top-10 hits from bi-encoder | |
#print("\n-------------------------\n") | |
#print("Top-N Bi-Encoder Retrieval hits") | |
hits = sorted(hits, key=lambda x: x['score'], reverse=True) | |
qe_string = [] | |
for hit in hits[0:1000]: | |
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string: | |
qe_string.append(passages[hit['corpus_id']].replace("\n", "")) | |
#print(qe_string) | |
total_qe.append(qe_string) | |
# Output of top-10 hits from re-ranker | |
#print("\n-------------------------\n") | |
#print("Top-N Cross-Encoder Re-ranker hits") | |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) | |
qe_string = [] | |
for hit in hits[0:1000]: | |
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string: | |
qe_string.append(passages[hit['corpus_id']].replace("\n", "")) | |
#print(qe_string) | |
total_qe.append(qe_string) | |
# Total Results | |
total_qe.append(qe_string) | |
print("E-Commerce Query Expansion Results: \n") | |
print(total_qe) | |
st.write("## Results:") | |
if st.button('Generated Expansion'): | |
out = search(query = user_query) | |
#st.success(out) |