File size: 5,609 Bytes
dfed715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b04b6
dfed715
 
 
 
 
62b04b6
 
4206bd7
 
 
 
 
 
 
 
70c2398
dfed715
 
 
 
c306d7d
dfed715
 
 
 
 
 
 
 
 
 
 
0a2d292
dfed715
 
 
 
6c5ae85
dfed715
bc54fc9
 
dfed715
 
 
 
 
bc54fc9
dfed715
 
c306d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b726bae
5f58eb0
 
 
 
 
 
dfed715
 
 
c306d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfed715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c306d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
dfed715
c306d7d
b726bae
c306d7d
 
 
 
 
 
 
 
 
 
dfed715
62b04b6
4206bd7
3dcac50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image

import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle

############
## Main page
############

st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")

st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('top.png')
st.image(image)

st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
#    label='# Enter Query:',
#    text='Press enter to add more',
#    value=['Mother'],
#    suggestions=['gift', 'nike', 'wool'],
#    maxtags=maxtags_sidebar,
#    key="aljnf")

user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")

# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
     'Which transformers model would you like to be selected?',
     ('multi-qa-MiniLM-L6-cos-v1','null','null'))

option2 = st.sidebar.selectbox(
     'Which corss-encoder model would you like to be selected?',
     ('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))

st.sidebar.success("Load Successfully!")

#if not torch.cuda.is_available():
#    print("Warning: No GPU found. Please add GPU to your notebook")

#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1,device='cpu')
bi_encoder.max_seq_length = 256    #Truncate long passages to 256 tokens
top_k = 32                          #Number of passages we want to retrieve with the bi-encoder

#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2, device='cpu')

passages = []

# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
  cache_data = pickle.load(fIn)
  passages = cache_data['sentences']
  corpus_embeddings = cache_data['embeddings']

from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np


# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
    tokenized_doc = []
    for token in text.lower().split():
        token = token.strip(string.punctuation)

        if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
            tokenized_doc.append(token)
    return tokenized_doc

tokenized_corpus = []
for passage in tqdm(passages):
    tokenized_corpus.append(bm25_tokenizer(passage))

bm25 = BM25Okapi(tokenized_corpus)

# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
    print("Input query:", query)
    total_qe = []

    ##### BM25 search (lexical search) #####
    bm25_scores = bm25.get_scores(bm25_tokenizer(query))
    top_n = np.argpartition(bm25_scores, -5)[-5:]
    bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
    bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
    
    #print("Top-10 lexical search (BM25) hits")
    qe_string = []
    for hit in bm25_hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))

    sub_string = []
    for item in qe_string:
      for sub_item in item.split(","):
        sub_string.append(sub_item)
    #print(sub_string)
    total_qe.append(sub_string)

    ##### Sematic Search #####
    # Encode the query using the bi-encoder and find potentially relevant passages
    query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
    hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
    hits = hits[0]  # Get the hits for the first query

    ##### Re-Ranking #####
    # Now, score all retrieved passages with the cross_encoder
    cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp)

    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx]

    # Output of top-10 hits from bi-encoder
    #print("\n-------------------------\n")
    #print("Top-N Bi-Encoder Retrieval hits")
    hits = sorted(hits, key=lambda x: x['score'], reverse=True)
    qe_string = []
    for hit in hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
    #print(qe_string)
    total_qe.append(qe_string)

    # Output of top-10 hits from re-ranker
    #print("\n-------------------------\n")
    #print("Top-N Cross-Encoder Re-ranker hits")
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
    qe_string = []
    for hit in hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
    #print(qe_string)
    total_qe.append(qe_string)

    # Total Results
    total_qe.append(qe_string)
    print("E-Commerce Query Expansion Results: \n")
    print(total_qe)

st.write("## Results:")
if st.button('Generated Expansion'):
    out = search(query = user_query)
    #st.success(out)