Spaces:
Sleeping
Sleeping
File size: 5,609 Bytes
dfed715 62b04b6 dfed715 62b04b6 4206bd7 70c2398 dfed715 c306d7d dfed715 0a2d292 dfed715 6c5ae85 dfed715 bc54fc9 dfed715 bc54fc9 dfed715 c306d7d b726bae 5f58eb0 dfed715 c306d7d dfed715 c306d7d dfed715 c306d7d b726bae c306d7d dfed715 62b04b6 4206bd7 3dcac50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image
import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle
############
## Main page
############
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('top.png')
st.image(image)
st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
# label='# Enter Query:',
# text='Press enter to add more',
# value=['Mother'],
# suggestions=['gift', 'nike', 'wool'],
# maxtags=maxtags_sidebar,
# key="aljnf")
user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")
# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
'Which transformers model would you like to be selected?',
('multi-qa-MiniLM-L6-cos-v1','null','null'))
option2 = st.sidebar.selectbox(
'Which corss-encoder model would you like to be selected?',
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
st.sidebar.success("Load Successfully!")
#if not torch.cuda.is_available():
# print("Warning: No GPU found. Please add GPU to your notebook")
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1,device='cpu')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2, device='cpu')
passages = []
# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
cache_data = pickle.load(fIn)
passages = cache_data['sentences']
corpus_embeddings = cache_data['embeddings']
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
tokenized_corpus = []
for passage in tqdm(passages):
tokenized_corpus.append(bm25_tokenizer(passage))
bm25 = BM25Okapi(tokenized_corpus)
# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
print("Input query:", query)
total_qe = []
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
top_n = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
#print("Top-10 lexical search (BM25) hits")
qe_string = []
for hit in bm25_hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
sub_string = []
for item in qe_string:
for sub_item in item.split(","):
sub_string.append(sub_item)
#print(sub_string)
total_qe.append(sub_string)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-10 hits from bi-encoder
#print("\n-------------------------\n")
#print("Top-N Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
#print(qe_string)
total_qe.append(qe_string)
# Output of top-10 hits from re-ranker
#print("\n-------------------------\n")
#print("Top-N Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
#print(qe_string)
total_qe.append(qe_string)
# Total Results
total_qe.append(qe_string)
print("E-Commerce Query Expansion Results: \n")
print(total_qe)
st.write("## Results:")
if st.button('Generated Expansion'):
out = search(query = user_query)
#st.success(out) |