File size: 1,221 Bytes
19c5ed1 80bb86d 370faa6 19c5ed1 370faa6 19c5ed1 51700b7 19c5ed1 370faa6 19c5ed1 370faa6 19c5ed1 c93e145 19c5ed1 370faa6 19c5ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image
############
## Main page
############
st.write("# Code for Keywords to Text")
st.markdown("***Idea is to build a model which will take keywords as inputs and generate information as outputs.***")
image = Image.open('1.png')
st.image(image)
st.sidebar.write("# Parameter Selection")
maxtags_sidebar = st.sidebar.slider('Number of tags allowed?', 1, 10, 1, key='ehikwegrjifbwreuk')
keywords = st_tags(
label='# Enter Keywords:',
text='Press enter to add more',
value=['Summer'],
suggestions=['five', 'six', 'seven', 'eight', 'nine', 'three', 'eleven', 'ten', 'four'],
maxtags=maxtags_sidebar,
key="aljnf")
# Add selectbox in streamlit
option = st.sidebar.selectbox(
'Which model would you like to be selected?',
('mrm8488/t5-base-finetuned-common_gen', 'k2t-base', 'k2t'))
#if st.sidebar.button('Load Model'):
# nlp=pipeline(option)
# st.sidebar.success("Load Successfully!")
nlp=pipeline(option)
st.sidebar.success("Load Successfully!")
st.write("## Results:")
if st.button('Generate Sentence'):
out=nlp(keywords)
st.success(out)
|