Spaces:
Running
Running
import os | |
import shutil | |
import gradio as gr | |
from PIL import Image | |
import subprocess | |
#os.chdir('Restormer') | |
examples = [['project/cartoon2.jpg','project/video1.mp4'], | |
['project/cartoon3.jpg','project/video2.mp4'], | |
['project/celeb1.jpg','project/video1.mp4'], | |
['project/celeb2.jpg','project/video2.mp4'], | |
] | |
title = "DaGAN" | |
description = """ | |
Gradio demo for <b>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</b>, CVPR 2022L. <a href='https://arxiv.org/abs/2203.06605'>[Paper]</a><a href='https://github.com/harlanhong/CVPR2022-DaGAN'>[Github Code]</a>\n | |
""" | |
##With Restormer, you can perform: (1) Image Denoising, (2) Defocus Deblurring, (3) Motion Deblurring, and (4) Image Deraining. | |
##To use it, simply upload your own image, or click one of the examples provided below. | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.06605'>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</a> | <a href='https://github.com/harlanhong/CVPR2022-DaGAN'>Github Repo</a></p>" | |
def inference(img, video): | |
if not os.path.exists('temp'): | |
os.system('mkdir temp') | |
#### Resize the longer edge of the input image | |
# os.system("ffmpeg -y -ss 00:00:00 -i {video} -to 00:00:08 -c copy temp/driving_video.mp4") | |
# driving_video = "video_input.mp4" | |
os.system("python demo_dagan.py --source_image {} --driving_video {} --output 'temp/rst.mp4'".format(img,video)) | |
return f'temp/rst.mp4' | |
gr.Interface( | |
inference, | |
[ | |
gr.inputs.Image(type="filepath", label="Source Image"), | |
gr.inputs.Video(type='filepath',label="Driving Video"), | |
], | |
gr.outputs.Video(type="mp4", label="Output Video"), | |
title=title, | |
description=description, | |
article=article, | |
theme ="huggingface", | |
examples=examples, | |
allow_flagging=False, | |
).launch(debug=False,enable_queue=True) | |