Spaces:
Running
Running
File size: 2,207 Bytes
bcec73a d726718 bcec73a d726718 bcec73a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import os
import shutil
import gradio as gr
from PIL import Image
#os.chdir('Restormer')
# Download sample images
examples = [['project/cartoon2.jpg','project/video1.mp4'],
['project/cartoon3.jpg','project/video2.mp4'],
['project/celeb1.jpg','project/video1.mp4'],
['project/celeb2.jpg','project/video2.mp4'],
]
inference_on = ['Full Resolution Image', 'Downsampled Image']
title = "DaGAN"
description = """
Gradio demo for <b>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</b>, CVPR 2022L. <a href='https://arxiv.org/abs/2203.06605'>[Paper]</a><a href='https://github.com/harlanhong/CVPR2022-DaGAN'>[Github Code]</a>\n
"""
##With Restormer, you can perform: (1) Image Denoising, (2) Defocus Deblurring, (3) Motion Deblurring, and (4) Image Deraining.
##To use it, simply upload your own image, or click one of the examples provided below.
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.06605'>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</a> | <a href='https://github.com/harlanhong/CVPR2022-DaGAN'>Github Repo</a></p>"
def inference(img, video):
if not os.path.exists('temp'):
os.system('mkdir temp')
#### Resize the longer edge of the input image
max_res = 256
width, height = img.size
if max(width,height) > max_res:
scale = max_res /max(width,height)
width = int(scale*width)
height = int(scale*height)
img = img.resize((width,height), Image.ANTIALIAS)
img.save("temp/image.jpg", "JPEG")
video.save('temp/video.mp4')
os.system("python demo_dagan.py --source_image 'temp/image.jpg' --driving_video {} --output 'temp/rst.mp4'".format(video))
return f'temp/rst.mp4'
gr.Interface(
inference,
[
gr.inputs.Image(type="pil", label="Source Image"),
gr.inputs.Video(label="Driving Video"),
],
gr.outputs.Video(type="mp4", label="Output"),
title=title,
description=description,
article=article,
theme ="huggingface",
examples=examples,
allow_flagging=False,
).launch(debug=False,enable_queue=True)
|