Spaces:
Running
Running
File size: 6,072 Bytes
bcec73a 10cdcde bcec73a 10cdcde bcec73a c45e94d bcec73a d726718 10cdcde bcec73a 10cdcde bcec73a 10cdcde bcec73a 10cdcde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import shutil
import gradio as gr
from PIL import Image
import subprocess
#os.chdir('Restormer')
from demo_dagan import *
# Download sample images
import torch
import torch.nn.functional as F
import os
from skimage import img_as_ubyte
import imageio
from skimage.transform import resize
import numpy as np
import modules.generator as G
import modules.keypoint_detector as KPD
import yaml
from collections import OrderedDict
import depth
examples = [['project/cartoon2.jpg','project/video1.mp4'],
['project/cartoon3.jpg','project/video2.mp4'],
['project/celeb1.jpg','project/video1.mp4'],
['project/celeb2.jpg','project/video2.mp4'],
]
inference_on = ['Full Resolution Image', 'Downsampled Image']
title = "DaGAN"
description = """
Gradio demo for <b>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</b>, CVPR 2022L. <a href='https://arxiv.org/abs/2203.06605'>[Paper]</a><a href='https://github.com/harlanhong/CVPR2022-DaGAN'>[Github Code]</a>\n
"""
##With Restormer, you can perform: (1) Image Denoising, (2) Defocus Deblurring, (3) Motion Deblurring, and (4) Image Deraining.
##To use it, simply upload your own image, or click one of the examples provided below.
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.06605'>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</a> | <a href='https://github.com/harlanhong/CVPR2022-DaGAN'>Github Repo</a></p>"
def inference(source_image, video):
if not os.path.exists('temp'):
os.system('mkdir temp')
cmd = f"ffmpeg -y -ss 00:00:00 -i {video} -to 00:00:08 -c copy video_input.mp4"
subprocess.run(cmd.split())
driving_video = "video_input.mp4"
output = "rst.mp4"
with open("config/vox-adv-256.yaml") as f:
config = yaml.load(f)
generator = G.SPADEDepthAwareGenerator(**config['model_params']['generator_params'],**config['model_params']['common_params'])
config['model_params']['common_params']['num_channels'] = 4
kp_detector = KPD.KPDetector(**config['model_params']['kp_detector_params'],**config['model_params']['common_params'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
g_checkpoint = torch.load("generator.pt", map_location=device)
kp_checkpoint = torch.load("kp_detector.pt", map_location=device)
ckp_generator = OrderedDict((k.replace('module.',''),v) for k,v in g_checkpoint.items())
generator.load_state_dict(ckp_generator)
ckp_kp_detector = OrderedDict((k.replace('module.',''),v) for k,v in kp_checkpoint.items())
kp_detector.load_state_dict(ckp_kp_detector)
depth_encoder = depth.ResnetEncoder(18, False)
depth_decoder = depth.DepthDecoder(num_ch_enc=depth_encoder.num_ch_enc, scales=range(4))
loaded_dict_enc = torch.load('encoder.pth')
loaded_dict_dec = torch.load('depth.pth')
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in depth_encoder.state_dict()}
depth_encoder.load_state_dict(filtered_dict_enc)
ckp_depth_decoder= {k: v for k, v in loaded_dict_dec.items() if k in depth_decoder.state_dict()}
depth_decoder.load_state_dict(ckp_depth_decoder)
depth_encoder.eval()
depth_decoder.eval()
# device = torch.device('cpu')
# stx()
generator = generator.to(device)
kp_detector = kp_detector.to(device)
depth_encoder = depth_encoder.to(device)
depth_decoder = depth_decoder.to(device)
generator.eval()
kp_detector.eval()
depth_encoder.eval()
depth_decoder.eval()
img_multiple_of = 8
with torch.inference_mode():
if torch.cuda.is_available():
torch.cuda.ipc_collect()
torch.cuda.empty_cache()
source_image = imageio.imread(source_image)
reader = imageio.get_reader(driving_video)
fps = reader.get_meta_data()['fps']
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
source_image = resize(source_image, (256, 256))[..., :3]
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
i = find_best_frame(source_image, driving_video)
print ("Best frame: " + str(i))
driving_forward = driving_video[i:]
driving_backward = driving_video[:(i+1)][::-1]
sources_forward, drivings_forward, predictions_forward,depth_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
sources_backward, drivings_backward, predictions_backward,depth_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
predictions = predictions_backward[::-1] + predictions_forward[1:]
sources = sources_backward[::-1] + sources_forward[1:]
drivings = drivings_backward[::-1] + drivings_forward[1:]
depth_gray = depth_backward[::-1] + depth_forward[1:]
imageio.mimsave(output, [np.concatenate((img_as_ubyte(s),img_as_ubyte(d),img_as_ubyte(p)),1) for (s,d,p) in zip(sources, drivings, predictions)], fps=fps)
imageio.mimsave("gray.mp4", depth_gray, fps=fps)
# merge the gray video
animation = np.array(imageio.mimread(output,memtest=False))
gray = np.array(imageio.mimread("gray.mp4",memtest=False))
src_dst = animation[:,:,:512,:]
animate = animation[:,:,512:,:]
merge = np.concatenate((src_dst,gray,animate),2)
imageio.mimsave(output, merge, fps=fps)
return output
gr.Interface(
inference,
[
gr.inputs.Image(type="filepath", label="Source Image"),
gr.inputs.Video(type='mp4',label="Driving Video"),
],
gr.outputs.Video(type="mp4", label="Output Video"),
title=title,
description=description,
article=article,
theme ="huggingface",
examples=examples,
allow_flagging=False,
).launch(debug=False,enable_queue=True)
|