File size: 9,072 Bytes
bcec73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
## Restormer: Efficient Transformer for High-Resolution Image Restoration
## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang
## https://arxiv.org/abs/2111.09881


import torch
import torch.nn.functional as F
import os
from skimage import img_as_ubyte
import cv2
import argparse
import imageio
from skimage.transform import resize
from scipy.spatial import ConvexHull
from tqdm import tqdm
import numpy as np
import modules.generator as G
import modules.keypoint_detector as KPD
import yaml
from collections import OrderedDict
import depth
parser = argparse.ArgumentParser(description='Test DaGAN on your own images')
parser.add_argument('--source_image', default='./temp/source.jpg', type=str, help='Directory of input source image')
parser.add_argument('--driving_video', default='./temp/driving.mp4', type=str, help='Directory for driving video')
parser.add_argument('--output', default='./temp/result.mp4', type=str, help='Directory for driving video')


args = parser.parse_args()
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
                 use_relative_movement=False, use_relative_jacobian=False):
    if adapt_movement_scale:
        source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
        driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
        adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
    else:
        adapt_movement_scale = 1

    kp_new = {k: v for k, v in kp_driving.items()}

    if use_relative_movement:
        kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
        kp_value_diff *= adapt_movement_scale
        kp_new['value'] = kp_value_diff + kp_source['value']

        if use_relative_jacobian:
            jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
            kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
    return kp_new
def find_best_frame(source, driving, cpu=False):
    import face_alignment

    def normalize_kp(kp):
        kp = kp - kp.mean(axis=0, keepdims=True)
        area = ConvexHull(kp[:, :2]).volume
        area = np.sqrt(area)
        kp[:, :2] = kp[:, :2] / area
        return kp

    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
                                      device='cpu' if cpu else 'cuda')
    kp_source = fa.get_landmarks(255 * source)[0]
    kp_source = normalize_kp(kp_source)
    norm  = float('inf')
    frame_num = 0
    for i, image in tqdm(enumerate(driving)):
        kp_driving = fa.get_landmarks(255 * image)[0]
        kp_driving = normalize_kp(kp_driving)
        new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
        if new_norm < norm:
            norm = new_norm
            frame_num = i
    return frame_num


def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False):
    sources = []
    drivings = []
    with torch.no_grad():
        predictions = []
        depth_gray = []
        source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
        driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
        if not cpu:
            source = source.cuda()
            driving = driving.cuda()
        outputs = depth_decoder(depth_encoder(source))
        depth_source = outputs[("disp", 0)]

        outputs = depth_decoder(depth_encoder(driving[:, :, 0]))
        depth_driving = outputs[("disp", 0)]
        source_kp = torch.cat((source,depth_source),1)
        driving_kp = torch.cat((driving[:, :, 0],depth_driving),1)
       
        kp_source = kp_detector(source_kp)
        kp_driving_initial = kp_detector(driving_kp) 

        # kp_source = kp_detector(source)
        # kp_driving_initial = kp_detector(driving[:, :, 0])

        for frame_idx in tqdm(range(driving.shape[2])):
            driving_frame = driving[:, :, frame_idx]

            if not cpu:
                driving_frame = driving_frame.cuda()
            outputs = depth_decoder(depth_encoder(driving_frame))
            depth_map = outputs[("disp", 0)]

            gray_driving = np.transpose(depth_map.data.cpu().numpy(), [0, 2, 3, 1])[0]
            gray_driving = 1-gray_driving/np.max(gray_driving)

            frame = torch.cat((driving_frame,depth_map),1)
            kp_driving = kp_detector(frame)

            kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
                                   kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
                                   use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
            out = generator(source, kp_source=kp_source, kp_driving=kp_norm,source_depth = depth_source, driving_depth = depth_map)

            drivings.append(np.transpose(driving_frame.data.cpu().numpy(), [0, 2, 3, 1])[0])
            sources.append(np.transpose(source.data.cpu().numpy(), [0, 2, 3, 1])[0])
            predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
            depth_gray.append(gray_driving)
    return sources, drivings, predictions,depth_gray
with open("config/vox-adv-256.yaml") as f:
    config = yaml.load(f)
generator = G.SPADEDepthAwareGenerator(**config['model_params']['generator_params'],**config['model_params']['common_params'])
config['model_params']['common_params']['num_channels'] = 4
kp_detector = KPD.KPDetector(**config['model_params']['kp_detector_params'],**config['model_params']['common_params'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


g_checkpoint = torch.load("generator.pt", map_location=device)
kp_checkpoint = torch.load("kp_detector.pt", map_location=device)

ckp_generator = OrderedDict((k.replace('module.',''),v) for k,v in g_checkpoint.items())
generator.load_state_dict(ckp_generator)
ckp_kp_detector = OrderedDict((k.replace('module.',''),v) for k,v in kp_checkpoint.items())
kp_detector.load_state_dict(ckp_kp_detector)

depth_encoder = depth.ResnetEncoder(18, False)
depth_decoder = depth.DepthDecoder(num_ch_enc=depth_encoder.num_ch_enc, scales=range(4))
loaded_dict_enc = torch.load('encoder.pth')
loaded_dict_dec = torch.load('depth.pth')
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in depth_encoder.state_dict()}
depth_encoder.load_state_dict(filtered_dict_enc)
ckp_depth_decoder= {k: v for k, v in loaded_dict_dec.items() if k in depth_decoder.state_dict()}
depth_decoder.load_state_dict(ckp_depth_decoder)
depth_encoder.eval()
depth_decoder.eval()
    
# device = torch.device('cpu')
# stx()

generator = generator.to(device)
kp_detector = kp_detector.to(device)
depth_encoder = depth_encoder.to(device)
depth_decoder = depth_decoder.to(device)

generator.eval()
kp_detector.eval()
depth_encoder.eval()
depth_decoder.eval()

img_multiple_of = 8

with torch.inference_mode():
    if torch.cuda.is_available():
        torch.cuda.ipc_collect()
        torch.cuda.empty_cache()
    source_image = imageio.imread(args.source_image)
    reader = imageio.get_reader(args.driving_video)
    fps = reader.get_meta_data()['fps']
    driving_video = []
    try:
        for im in reader:
            driving_video.append(im)
    except RuntimeError:
        pass
    reader.close()

    source_image = resize(source_image, (256, 256))[..., :3]
    driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]



    i = find_best_frame(source_image, driving_video)
    print ("Best frame: " + str(i))
    driving_forward = driving_video[i:]
    driving_backward = driving_video[:(i+1)][::-1]
    sources_forward, drivings_forward, predictions_forward,depth_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
    sources_backward, drivings_backward, predictions_backward,depth_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
    predictions = predictions_backward[::-1] + predictions_forward[1:]
    sources = sources_backward[::-1] + sources_forward[1:]
    drivings = drivings_backward[::-1] + drivings_forward[1:]
    depth_gray = depth_backward[::-1] + depth_forward[1:]

    imageio.mimsave(args.output, [np.concatenate((img_as_ubyte(s),img_as_ubyte(d),img_as_ubyte(p)),1) for (s,d,p) in zip(sources, drivings, predictions)], fps=fps)
    imageio.mimsave("gray.mp4", depth_gray, fps=fps)
    # merge the gray video
    animation = np.array(imageio.mimread(args.output,memtest=False))
    gray = np.array(imageio.mimread("gray.mp4",memtest=False))

    src_dst = animation[:,:,:512,:]
    animate = animation[:,:,512:,:]
    merge = np.concatenate((src_dst,gray,animate),2)
    imageio.mimsave(args.output, merge, fps=fps)

    # print(f"\nRestored images are saved at {out_dir}")