Spaces:
Running
Running
File size: 17,608 Bytes
bcec73a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
from torch import nn
import torch
import torch.nn.functional as F
from modules.util import AntiAliasInterpolation2d, make_coordinate_grid
from torchvision import models
import numpy as np
from torch.autograd import grad
import pdb
import depth
class Vgg19(torch.nn.Module):
"""
Vgg19 network for perceptual loss. See Sec 3.3.
"""
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))),
requires_grad=False)
self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))),
requires_grad=False)
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
X = (X - self.mean) / self.std
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class ImagePyramide(torch.nn.Module):
"""
Create image pyramide for computing pyramide perceptual loss. See Sec 3.3
"""
def __init__(self, scales, num_channels):
super(ImagePyramide, self).__init__()
downs = {}
for scale in scales:
downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale)
self.downs = nn.ModuleDict(downs)
def forward(self, x):
out_dict = {}
for scale, down_module in self.downs.items():
out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x)
return out_dict
class Transform:
"""
Random tps transformation for equivariance constraints. See Sec 3.3
"""
def __init__(self, bs, **kwargs):
noise = torch.normal(mean=0, std=kwargs['sigma_affine'] * torch.ones([bs, 2, 3]))
self.theta = noise + torch.eye(2, 3).view(1, 2, 3)
self.bs = bs
if ('sigma_tps' in kwargs) and ('points_tps' in kwargs):
self.tps = True
self.control_points = make_coordinate_grid((kwargs['points_tps'], kwargs['points_tps']), type=noise.type())
self.control_points = self.control_points.unsqueeze(0)
self.control_params = torch.normal(mean=0,
std=kwargs['sigma_tps'] * torch.ones([bs, 1, kwargs['points_tps'] ** 2]))
else:
self.tps = False
def transform_frame(self, frame):
grid = make_coordinate_grid(frame.shape[2:], type=frame.type()).unsqueeze(0)
grid = grid.view(1, frame.shape[2] * frame.shape[3], 2)
grid = self.warp_coordinates(grid).view(self.bs, frame.shape[2], frame.shape[3], 2)
return F.grid_sample(frame, grid, padding_mode="reflection")
def warp_coordinates(self, coordinates):
theta = self.theta.type(coordinates.type())
theta = theta.unsqueeze(1)
transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:]
transformed = transformed.squeeze(-1)
if self.tps:
control_points = self.control_points.type(coordinates.type())
control_params = self.control_params.type(coordinates.type())
distances = coordinates.view(coordinates.shape[0], -1, 1, 2) - control_points.view(1, 1, -1, 2)
distances = torch.abs(distances).sum(-1)
result = distances ** 2
result = result * torch.log(distances + 1e-6)
result = result * control_params
result = result.sum(dim=2).view(self.bs, coordinates.shape[1], 1)
transformed = transformed + result
return transformed
def jacobian(self, coordinates):
new_coordinates = self.warp_coordinates(coordinates)
grad_x = grad(new_coordinates[..., 0].sum(), coordinates, create_graph=True)
grad_y = grad(new_coordinates[..., 1].sum(), coordinates, create_graph=True)
jacobian = torch.cat([grad_x[0].unsqueeze(-2), grad_y[0].unsqueeze(-2)], dim=-2)
return jacobian
def detach_kp(kp):
return {key: value.detach() for key, value in kp.items()}
class GeneratorFullModel(torch.nn.Module):
"""
Merge all generator related updates into single model for better multi-gpu usage
"""
def __init__(self, kp_extractor, generator, discriminator, train_params,opt):
super(GeneratorFullModel, self).__init__()
self.kp_extractor = kp_extractor
self.generator = generator
self.discriminator = discriminator
self.train_params = train_params
self.scales = train_params['scales']
self.disc_scales = self.discriminator.module.scales
self.pyramid = ImagePyramide(self.scales, generator.module.num_channels)
if torch.cuda.is_available():
self.pyramid = self.pyramid.cuda()
self.opt = opt
self.loss_weights = train_params['loss_weights']
if sum(self.loss_weights['perceptual']) != 0:
self.vgg = Vgg19()
if torch.cuda.is_available():
self.vgg = self.vgg.cuda()
self.depth_encoder = depth.ResnetEncoder(18, False).cuda()
self.depth_decoder = depth.DepthDecoder(num_ch_enc=self.depth_encoder.num_ch_enc, scales=range(4)).cuda()
loaded_dict_enc = torch.load('depth/models/weights_19/encoder.pth',map_location='cpu')
loaded_dict_dec = torch.load('depth/models/weights_19/depth.pth',map_location='cpu')
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in self.depth_encoder.state_dict()}
self.depth_encoder.load_state_dict(filtered_dict_enc)
self.depth_decoder.load_state_dict(loaded_dict_dec)
self.set_requires_grad(self.depth_encoder, False)
self.set_requires_grad(self.depth_decoder, False)
self.depth_decoder.eval()
self.depth_encoder.eval()
def set_requires_grad(self, nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def forward(self, x):
depth_source = None
depth_driving = None
outputs = self.depth_decoder(self.depth_encoder(x['source']))
depth_source = outputs[("disp", 0)]
outputs = self.depth_decoder(self.depth_encoder(x['driving']))
depth_driving = outputs[("disp", 0)]
if self.opt.use_depth:
kp_source = self.kp_extractor(depth_source)
kp_driving = self.kp_extractor(depth_driving)
elif self.opt.rgbd:
source = torch.cat((x['source'],depth_source),1)
driving = torch.cat((x['driving'],depth_driving),1)
kp_source = self.kp_extractor(source)
kp_driving = self.kp_extractor(driving)
else:
kp_source = self.kp_extractor(x['source'])
kp_driving = self.kp_extractor(x['driving'])
generated = self.generator(x['source'], kp_source=kp_source, kp_driving=kp_driving, source_depth = depth_source, driving_depth = depth_driving)
generated.update({'kp_source': kp_source, 'kp_driving': kp_driving})
loss_values = {}
pyramide_real = self.pyramid(x['driving'])
pyramide_generated = self.pyramid(generated['prediction'])
if sum(self.loss_weights['perceptual']) != 0:
value_total = 0
for scale in self.scales:
x_vgg = self.vgg(pyramide_generated['prediction_' + str(scale)])
y_vgg = self.vgg(pyramide_real['prediction_' + str(scale)])
for i, weight in enumerate(self.loss_weights['perceptual']):
value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean()
value_total += self.loss_weights['perceptual'][i] * value
loss_values['perceptual'] = value_total
if self.loss_weights['generator_gan'] != 0:
discriminator_maps_generated = self.discriminator(pyramide_generated, kp=detach_kp(kp_driving))
discriminator_maps_real = self.discriminator(pyramide_real, kp=detach_kp(kp_driving))
value_total = 0
for scale in self.disc_scales:
key = 'prediction_map_%s' % scale
value = ((1 - discriminator_maps_generated[key]) ** 2).mean()
value_total += self.loss_weights['generator_gan'] * value
loss_values['gen_gan'] = value_total
if sum(self.loss_weights['feature_matching']) != 0:
value_total = 0
for scale in self.disc_scales:
key = 'feature_maps_%s' % scale
for i, (a, b) in enumerate(zip(discriminator_maps_real[key], discriminator_maps_generated[key])):
if self.loss_weights['feature_matching'][i] == 0:
continue
value = torch.abs(a - b).mean()
value_total += self.loss_weights['feature_matching'][i] * value
loss_values['feature_matching'] = value_total
if (self.loss_weights['equivariance_value'] + self.loss_weights['equivariance_jacobian']) != 0:
transform = Transform(x['driving'].shape[0], **self.train_params['transform_params'])
transformed_frame = transform.transform_frame(x['driving'])
if self.opt.use_depth:
outputs = self.depth_decoder(self.depth_encoder(transformed_frame))
depth_transform = outputs[("disp", 0)]
transformed_kp = self.kp_extractor(depth_transform)
elif self.opt.rgbd:
outputs = self.depth_decoder(self.depth_encoder(transformed_frame))
depth_transform = outputs[("disp", 0)]
transform_img = torch.cat((transformed_frame,depth_transform),1)
transformed_kp = self.kp_extractor(transform_img)
else:
transformed_kp = self.kp_extractor(transformed_frame)
generated['transformed_frame'] = transformed_frame
generated['transformed_kp'] = transformed_kp
## Value loss part
if self.loss_weights['equivariance_value'] != 0:
value = torch.abs(kp_driving['value'] - transform.warp_coordinates(transformed_kp['value'])).mean()
loss_values['equivariance_value'] = self.loss_weights['equivariance_value'] * value
## jacobian loss part
if self.loss_weights['equivariance_jacobian'] != 0:
jacobian_transformed = torch.matmul(transform.jacobian(transformed_kp['value']),
transformed_kp['jacobian'])
normed_driving = torch.inverse(kp_driving['jacobian'])
normed_transformed = jacobian_transformed
value = torch.matmul(normed_driving, normed_transformed)
eye = torch.eye(2).view(1, 1, 2, 2).type(value.type())
value = torch.abs(eye - value).mean()
loss_values['equivariance_jacobian'] = self.loss_weights['equivariance_jacobian'] * value
if self.loss_weights['kp_distance']:
bz,num_kp,kp_dim = kp_source['value'].shape
sk = kp_source['value'].unsqueeze(2)-kp_source['value'].unsqueeze(1)
dk = kp_driving['value'].unsqueeze(2)-kp_driving['value'].unsqueeze(1)
source_dist_loss = (-torch.sign((torch.sqrt((sk*sk).sum(-1)+1e-8)+torch.eye(num_kp).cuda()*0.2)-0.2)+1).mean()
driving_dist_loss = (-torch.sign((torch.sqrt((dk*dk).sum(-1)+1e-8)+torch.eye(num_kp).cuda()*0.2)-0.2)+1).mean()
# driving_dist_loss = (torch.sign(1-(torch.sqrt((dk*dk).sum(-1)+1e-8)+torch.eye(num_kp).cuda()))+1).mean()
value_total = self.loss_weights['kp_distance']*(source_dist_loss+driving_dist_loss)
loss_values['kp_distance'] = value_total
if self.loss_weights['kp_prior']:
bz,num_kp,kp_dim = kp_source['value'].shape
sk = kp_source['value'].unsqueeze(2)-kp_source['value'].unsqueeze(1)
dk = kp_driving['value'].unsqueeze(2)-kp_driving['value'].unsqueeze(1)
dis_loss = torch.relu(0.1-torch.sqrt((sk*sk).sum(-1)+1e-8))+torch.relu(0.1-torch.sqrt((dk*dk).sum(-1)+1e-8))
bs,nk,_=kp_source['value'].shape
scoor_depth = F.grid_sample(depth_source,kp_source['value'].view(bs,1,nk,-1))
dcoor_depth = F.grid_sample(depth_driving,kp_driving['value'].view(bs,1,nk,-1))
sd_loss = torch.abs(scoor_depth.mean(-1,keepdim=True) - kp_source['value'].view(bs,1,nk,-1)).mean()
dd_loss = torch.abs(dcoor_depth.mean(-1,keepdim=True) - kp_driving['value'].view(bs,1,nk,-1)).mean()
value_total = self.loss_weights['kp_distance']*(dis_loss+sd_loss+dd_loss)
loss_values['kp_distance'] = value_total
if self.loss_weights['kp_scale']:
bz,num_kp,kp_dim = kp_source['value'].shape
if self.opt.rgbd:
outputs = self.depth_decoder(self.depth_encoder(generated['prediction']))
depth_pred = outputs[("disp", 0)]
pred = torch.cat((generated['prediction'],depth_pred),1)
kp_pred = self.kp_extractor(pred)
elif self.opt.use_depth:
outputs = self.depth_decoder(self.depth_encoder(generated['prediction']))
depth_pred = outputs[("disp", 0)]
kp_pred = self.kp_extractor(depth_pred)
else:
kp_pred = self.kp_extractor(generated['prediction'])
pred_mean = kp_pred['value'].mean(1,keepdim=True)
driving_mean = kp_driving['value'].mean(1,keepdim=True)
pk = kp_source['value']-pred_mean
dk = kp_driving['value']- driving_mean
pred_dist_loss = torch.sqrt((pk*pk).sum(-1)+1e-8)
driving_dist_loss = torch.sqrt((dk*dk).sum(-1)+1e-8)
scale_vec = driving_dist_loss/pred_dist_loss
bz,n = scale_vec.shape
value = torch.abs(scale_vec[:,:n-1]-scale_vec[:,1:]).mean()
value_total = self.loss_weights['kp_scale']*value
loss_values['kp_scale'] = value_total
if self.loss_weights['depth_constraint']:
bz,num_kp,kp_dim = kp_source['value'].shape
outputs = self.depth_decoder(self.depth_encoder(generated['prediction']))
depth_pred = outputs[("disp", 0)]
value_total = self.loss_weights['depth_constraint']*torch.abs(depth_driving-depth_pred).mean()
loss_values['depth_constraint'] = value_total
return loss_values, generated
class DiscriminatorFullModel(torch.nn.Module):
"""
Merge all discriminator related updates into single model for better multi-gpu usage
"""
def __init__(self, kp_extractor, generator, discriminator, train_params):
super(DiscriminatorFullModel, self).__init__()
self.kp_extractor = kp_extractor
self.generator = generator
self.discriminator = discriminator
self.train_params = train_params
self.scales = self.discriminator.module.scales
self.pyramid = ImagePyramide(self.scales, generator.module.num_channels)
if torch.cuda.is_available():
self.pyramid = self.pyramid.cuda()
self.loss_weights = train_params['loss_weights']
def forward(self, x, generated):
pyramide_real = self.pyramid(x['driving'])
pyramide_generated = self.pyramid(generated['prediction'].detach())
kp_driving = generated['kp_driving']
discriminator_maps_generated = self.discriminator(pyramide_generated, kp=detach_kp(kp_driving))
discriminator_maps_real = self.discriminator(pyramide_real, kp=detach_kp(kp_driving))
loss_values = {}
value_total = 0
for scale in self.scales:
key = 'prediction_map_%s' % scale
value = (1 - discriminator_maps_real[key]) ** 2 + discriminator_maps_generated[key] ** 2
value_total += self.loss_weights['discriminator_gan'] * value.mean()
loss_values['disc_gan'] = value_total
return loss_values
|