File size: 5,688 Bytes
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from typing import Literal, Tuple, List

import torch
import torch.nn.functional as F
from mmdet.structures import SampleList
from mmengine import MMLogger
from mmengine.model import BaseModule
from mmdet.registry import MODELS

from ext.sam import MaskDecoder
from ext.meta.sam_meta import meta_dict, checkpoint_dict
from utils.load_checkpoint import load_checkpoint_with_prefix


@MODELS.register_module()
class SAMMaskDecoder(BaseModule):

    def __init__(
            self,
            model_name: Literal['vit_h', 'vit_l', 'vit_b'] = 'vit_h',
            fix: bool = True,
            init_cfg=None,
    ):
        assert init_cfg is not None and \
               init_cfg['type'] in ['sam_pretrain', 'Pretrained'], f"{init_cfg['type']} is not supported."
        pretrained = init_cfg['checkpoint']
        super().__init__(init_cfg=None)
        self.init_cfg = init_cfg
        self.logger = MMLogger.get_current_instance()

        mask_decoder = MaskDecoder(
            num_multimask_outputs=3,
            transformer_dim=meta_dict[model_name]['prompt_embed_dim'],
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        )
        if self.init_cfg['type'] == 'sam_pretrain':
            checkpoint_path = checkpoint_dict[pretrained]
            state_dict = load_checkpoint_with_prefix(checkpoint_path, prefix='mask_decoder')
            mask_decoder.load_state_dict(state_dict, strict=True)

        self.mask_decoder = mask_decoder
        if self.init_cfg['type'] == 'Pretrained':
            checkpoint_path = pretrained
            state_dict = load_checkpoint_with_prefix(checkpoint_path, prefix=self.init_cfg['prefix'])
            self.load_state_dict(state_dict, strict=True)

        self.fix = fix
        if self.fix:
            self.train(mode=False)
            for name, param in self.named_parameters():
                param.requires_grad = False

    def init_weights(self):
        self.logger.info(f"Init Config for {self.__class__.__name__}")
        self.logger.info(self.init_cfg)

    def forward_logit(self, cls_embd):
        cls_pred = torch.einsum('bnc,ckp->bnkp', F.normalize(cls_embd, dim=-1), self.cls_embed)
        cls_pred = cls_pred.max(-1).values
        cls_pred = self.logit_scale.exp() * cls_pred
        return cls_pred

    def predict_masks(
            self,
            image_embeddings: torch.Tensor,
            image_pe: torch.Tensor,
            sparse_prompt_embeddings: torch.Tensor,
            dense_prompt_embeddings: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""
        num_instances = int(sparse_prompt_embeddings.shape[0])
        # Concatenate output tokens
        output_tokens = torch.cat([self.mask_decoder.iou_token.weight, self.mask_decoder.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(num_instances, -1, -1)
        queries = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

        # image_embeddings = torch.repeat_interleave(image_embeddings, num_instances, dim=0)
        image_embeddings = image_embeddings + dense_prompt_embeddings
        pos_img = torch.repeat_interleave(image_pe, num_instances, dim=0)
        b, c, h, w = image_embeddings.shape

        # Run the transformer
        queries, mask_feats = self.mask_decoder.transformer(image_embeddings, pos_img, queries)
        iou_query = queries[:, 0, :]
        mask_embeds = queries[:, 1:(1 + self.mask_decoder.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        mask_feats = mask_feats.transpose(1, 2).view(b, c, h, w)
        mask_feats = self.mask_decoder.output_upscaling(mask_feats)
        mask_queries_list: List[torch.Tensor] = []
        for i in range(self.mask_decoder.num_mask_tokens):
            mask_queries_list.append(self.mask_decoder.output_hypernetworks_mlps[i](mask_embeds[:, i, :]))
        mask_queries = torch.stack(mask_queries_list, dim=1)
        b, c, h, w = mask_feats.shape
        masks = (mask_queries @ mask_feats.view(b, c, h * w)).view(b, -1, h, w)

        # Generate mask quality predictions
        iou_pred = self.mask_decoder.iou_prediction_head(iou_query)

        return masks, iou_pred, None

    def forward(
            self,
            image_embeddings: torch.Tensor,
            image_pe: torch.Tensor,
            sparse_prompt_embeddings: torch.Tensor,
            dense_prompt_embeddings: torch.Tensor,
            multi_mask_output: bool,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        num_prompts = len(sparse_prompt_embeddings)
        image_embeddings = torch.repeat_interleave(image_embeddings, num_prompts, dim=0)
        masks, iou_pred, cls_pred = self.predict_masks(
            image_embeddings=image_embeddings,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
        )

        # Select the correct mask or masks for output
        if multi_mask_output:
            mask_slice = slice(1, None)
        else:
            mask_slice = slice(0, 1)
        masks = masks[:, mask_slice, :, :]
        iou_pred = iou_pred[:, mask_slice]

        # Prepare output
        return masks, iou_pred, cls_pred

    def forward_train(
            self,
            image_embeddings: torch.Tensor,
            image_pe: torch.Tensor,
            sparse_prompt_embeddings: torch.Tensor,
            dense_prompt_embeddings: torch.Tensor,
            batch_ind_list: List[int],
            data_samples: SampleList,
    ):
        raise NotImplementedError