Spaces:
Sleeping
Sleeping
aisyahhrazak
commited on
Upload 7 files
Browse files- IMG_8137.xlsx +0 -0
- app.py +421 -0
- attn_mask_utils.py +160 -0
- bidirectional_mistral.py +281 -0
- classifier.py +90 -0
- en.json +1 -0
- sentiment-tpb-dataset.jsonl +0 -0
IMG_8137.xlsx
ADDED
Binary file (14.6 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
+
from classifier import MistralForSequenceClassification
|
4 |
+
import torch
|
5 |
+
import nltk
|
6 |
+
import json
|
7 |
+
import pandas as pd
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from wordcloud import WordCloud
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import io
|
12 |
+
import base64
|
13 |
+
from PIL import Image
|
14 |
+
from nltk import bigrams
|
15 |
+
import malaya
|
16 |
+
from collections import Counter
|
17 |
+
|
18 |
+
with open('en.json') as fopen:
|
19 |
+
en = json.load(fopen)
|
20 |
+
|
21 |
+
stopwords = malaya.text.function.get_stopwords()
|
22 |
+
stopwords = stopwords + en + ['lor', 'quote','Quote','QUOTE','pm', 'long', 'jer', 'time', 'feel', 'liao', 'wow', 'https', 'http', 've', 'ko', 'kena', 'post', 'ni', 'tu', 'don', 'je', 'jeh', 'la', 'tau', 'haha', 'hahaha', 'hahahaha']
|
23 |
+
stopwords += ['for me', 'to be', 'in the', 'me to', 'for me to']
|
24 |
+
|
25 |
+
nltk.download('punkt', quiet=True)
|
26 |
+
nltk.download('punkt_tab', quiet=True)
|
27 |
+
nltk.download('stopwords', quiet=True)
|
28 |
+
nltk.download('vader_lexicon', quiet=True)
|
29 |
+
tokenizer_tpb = AutoTokenizer.from_pretrained('mesolitica/malaysian-mistral-191M-MLM-512')
|
30 |
+
model_tpb = MistralForSequenceClassification.from_pretrained('HalalFoodNLP/tpb-model-halal', torch_dtype=torch.bfloat16)
|
31 |
+
model_sentiment = MistralForSequenceClassification.from_pretrained('malaysia-ai/sentiment-mistral-191M-MLM', torch_dtype=torch.bfloat16)
|
32 |
+
pipeline_tpb = pipeline(task="text-classification", model=model_tpb, tokenizer=tokenizer_tpb)
|
33 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=model_sentiment, tokenizer=tokenizer_tpb)
|
34 |
+
|
35 |
+
data = []
|
36 |
+
with open('sentiment-tpb-dataset.jsonl', 'r') as file:
|
37 |
+
for line in file:
|
38 |
+
data.append(json.loads(line))
|
39 |
+
|
40 |
+
df = pd.DataFrame(data)
|
41 |
+
|
42 |
+
# Update the generate_wordcloud function to return a PIL Image object
|
43 |
+
def generate_wordcloud(text):
|
44 |
+
# Generate the word cloud
|
45 |
+
wordcloud = WordCloud(width=300, height=200, background_color='white').generate(text)
|
46 |
+
|
47 |
+
# Create the plot
|
48 |
+
plt.figure(figsize=(10, 5))
|
49 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
50 |
+
plt.axis('off')
|
51 |
+
plt.tight_layout(pad=0)
|
52 |
+
|
53 |
+
# Save the plot to a bytes buffer
|
54 |
+
buf = io.BytesIO()
|
55 |
+
plt.savefig(buf, format='png')
|
56 |
+
plt.close()
|
57 |
+
buf.seek(0)
|
58 |
+
|
59 |
+
# Convert bytes buffer to PIL Image
|
60 |
+
image = Image.open(buf)
|
61 |
+
return image
|
62 |
+
|
63 |
+
# Add a function to generate bigrams
|
64 |
+
def generate_bigrams(text):
|
65 |
+
words = nltk.word_tokenize(text.lower())
|
66 |
+
words = [word for word in words if word.isalnum() and word not in stopwords]
|
67 |
+
bi_grams = list(bigrams(words))
|
68 |
+
return Counter(bi_grams).most_common(10)
|
69 |
+
|
70 |
+
def predict_decision(sentiment_label):
|
71 |
+
if sentiment_label == 'positive':
|
72 |
+
return "High likelihood of purchase"
|
73 |
+
elif sentiment_label == 'neutral':
|
74 |
+
return "Moderate likelihood of purchase"
|
75 |
+
else:
|
76 |
+
return "Low likelihood of purchase"
|
77 |
+
|
78 |
+
# Function to generate report based on TPB sentiment
|
79 |
+
def generate_report(tpb_sentiment_df):
|
80 |
+
report = "## TPB Factor Analysis and Recommendations Report\n\n"
|
81 |
+
|
82 |
+
for _, row in tpb_sentiment_df.iterrows():
|
83 |
+
tpb_label = row['tpb_label']
|
84 |
+
positive_percentage = row['positive']
|
85 |
+
negative_percentage = row['negative']
|
86 |
+
|
87 |
+
|
88 |
+
if negative_percentage > 70: # Only generate recommendations for positive < 70%
|
89 |
+
if tpb_label == "attitude":
|
90 |
+
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
|
91 |
+
report += """
|
92 |
+
**Current Issues:**
|
93 |
+
- High negative perception regarding product quality
|
94 |
+
- Concerns about halal certification and its authenticity
|
95 |
+
- Pricing issues in comparison to perceived value
|
96 |
+
|
97 |
+
**Recommended Actions:**
|
98 |
+
|
99 |
+
1. **Quality Control Improvements**
|
100 |
+
- Implement enhanced product quality measures
|
101 |
+
- Obtain globally recognized halal certifications
|
102 |
+
- Conduct regular quality audits
|
103 |
+
|
104 |
+
2. **Educational Campaigns**
|
105 |
+
- Educate customers on halal certification processes
|
106 |
+
- Raise awareness about the health benefits of halal products
|
107 |
+
- Highlight ethical and sustainable sourcing
|
108 |
+
|
109 |
+
3. **Pricing Strategy Adjustment**
|
110 |
+
- Reassess pricing to align with customer expectations
|
111 |
+
- Introduce discount programs or loyalty initiatives
|
112 |
+
"""
|
113 |
+
if tpb_label == "religious knowledge":
|
114 |
+
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
|
115 |
+
report += """
|
116 |
+
**Current Issues:**
|
117 |
+
- Lack of awareness and understanding about the halal process
|
118 |
+
- Customers may be unsure of the religious guidelines followed
|
119 |
+
|
120 |
+
**Recommended Actions:**
|
121 |
+
|
122 |
+
1. **Religious Knowledge Enhancement**
|
123 |
+
- Provide clear educational materials on the halal process
|
124 |
+
- Collaborate with religious scholars to endorse products
|
125 |
+
- Ensure transparent labeling and certification
|
126 |
+
|
127 |
+
2. **Community Engagement**
|
128 |
+
- Host webinars or community events about halal
|
129 |
+
- Partner with local religious organizations for outreach
|
130 |
+
- Share customer testimonials emphasizing trust in your certification
|
131 |
+
"""
|
132 |
+
|
133 |
+
if tpb_label == "subjective norms":
|
134 |
+
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
|
135 |
+
report += """
|
136 |
+
**Current Issues:**
|
137 |
+
- Social influence or peer pressure regarding halal compliance is weak
|
138 |
+
- Lack of community-driven recommendations for the product
|
139 |
+
|
140 |
+
**Recommended Actions:**
|
141 |
+
|
142 |
+
1. **Influence Social Circles**
|
143 |
+
- Engage community leaders or influencers to endorse products
|
144 |
+
- Create social campaigns around the halal certification to enhance peer recommendations
|
145 |
+
|
146 |
+
2. **Referral Programs**
|
147 |
+
- Introduce referral programs where existing customers can promote the product
|
148 |
+
- Offer incentives for customers who share their experiences with others
|
149 |
+
|
150 |
+
3. **Testimonials and Success Stories**
|
151 |
+
- Use customer testimonials and success stories to strengthen social trust
|
152 |
+
"""
|
153 |
+
|
154 |
+
if tpb_label == "perceived behavioural control":
|
155 |
+
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
|
156 |
+
report += """
|
157 |
+
**Current Issues:**
|
158 |
+
- Perceived difficulty in understanding or accessing halal-certified products
|
159 |
+
- Concerns about control over product quality and sourcing transparency
|
160 |
+
|
161 |
+
**Recommended Actions:**
|
162 |
+
|
163 |
+
1. **Improve Accessibility**
|
164 |
+
- Make halal products more accessible through multiple platforms (e-commerce, retail stores)
|
165 |
+
- Ensure ease of purchase and fast delivery options
|
166 |
+
|
167 |
+
2. **Enhance Transparency**
|
168 |
+
- Provide detailed information about sourcing and production processes
|
169 |
+
- Use blockchain or similar technology to enhance transparency in halal certification
|
170 |
+
|
171 |
+
3. **Customer Empowerment**
|
172 |
+
- Offer customer feedback channels to empower users to voice concerns and suggestions
|
173 |
+
- Ensure that concerns are addressed promptly to build trust and satisfaction
|
174 |
+
"""
|
175 |
+
|
176 |
+
return report
|
177 |
+
|
178 |
+
|
179 |
+
def search_company(keyword):
|
180 |
+
if not keyword:
|
181 |
+
return None, None, None, None
|
182 |
+
|
183 |
+
filtered_df = df[df['text'].str.contains(keyword, case=False)]
|
184 |
+
|
185 |
+
if filtered_df.empty:
|
186 |
+
return None, None, None, None
|
187 |
+
|
188 |
+
# Calculate sentiment distribution
|
189 |
+
sentiment_counts = filtered_df['label'].value_counts(normalize=True) * 100
|
190 |
+
|
191 |
+
colors = ['red' if sentiment == 'negative' else 'gray' if sentiment == 'neutral' else 'blue' for sentiment in sentiment_counts.index]
|
192 |
+
|
193 |
+
# Create the bar plot
|
194 |
+
sentiment_fig = go.Figure(data=[go.Bar(
|
195 |
+
x=sentiment_counts.index,
|
196 |
+
y=sentiment_counts.values,
|
197 |
+
text=[f'{val:.1f}%' for val in sentiment_counts.values],
|
198 |
+
textposition='auto',
|
199 |
+
marker_color=colors
|
200 |
+
)])
|
201 |
+
|
202 |
+
sentiment_fig.update_layout(
|
203 |
+
title='Overall Sentiment Distribution',
|
204 |
+
xaxis_title='Sentiment',
|
205 |
+
yaxis_title='Percentage'
|
206 |
+
)
|
207 |
+
|
208 |
+
tpb_counts = filtered_df['tpb_label'].value_counts(normalize=True) * 100
|
209 |
+
tpb_fig = go.Figure(data=[go.Bar(
|
210 |
+
x=tpb_counts.index,
|
211 |
+
y=tpb_counts.values,
|
212 |
+
text=[f'{val:.1f}%' for val in tpb_counts.values],
|
213 |
+
textposition='auto'
|
214 |
+
)])
|
215 |
+
tpb_fig.update_layout(title='Overall TPB Factor Distribution', xaxis_title='TPB Factor', yaxis_title='Percentage')
|
216 |
+
|
217 |
+
# Calculate sentiment distribution within each TPB factor
|
218 |
+
tpb_sentiment_df = filtered_df.groupby(['tpb_label', 'label']).size().unstack(fill_value=0)
|
219 |
+
tpb_sentiment_df = tpb_sentiment_df.div(tpb_sentiment_df.sum(axis=1), axis=0) * 100
|
220 |
+
|
221 |
+
# Define colors for each sentiment
|
222 |
+
color_map = {
|
223 |
+
'negative': 'red',
|
224 |
+
'neutral': 'gray',
|
225 |
+
'positive': 'blue'
|
226 |
+
}
|
227 |
+
|
228 |
+
tpb_sentiment_fig = go.Figure()
|
229 |
+
for sentiment in tpb_sentiment_df.columns:
|
230 |
+
tpb_sentiment_fig.add_trace(go.Bar(
|
231 |
+
name=sentiment,
|
232 |
+
x=tpb_sentiment_df.index,
|
233 |
+
y=tpb_sentiment_df[sentiment],
|
234 |
+
text=[f'{val:.1f}%' for val in tpb_sentiment_df[sentiment]],
|
235 |
+
textposition='auto',
|
236 |
+
marker_color=color_map.get(sentiment, 'gray')
|
237 |
+
))
|
238 |
+
|
239 |
+
tpb_sentiment_fig.update_layout(
|
240 |
+
barmode='stack',
|
241 |
+
title='Sentiment Distribution within TPB Factors',
|
242 |
+
xaxis_title='TPB Factor',
|
243 |
+
yaxis_title='Percentage'
|
244 |
+
)
|
245 |
+
|
246 |
+
report = generate_report(tpb_sentiment_df.reset_index())
|
247 |
+
|
248 |
+
wordclouds = {}
|
249 |
+
bigrams_data = {}
|
250 |
+
for label in filtered_df['tpb_label'].unique():
|
251 |
+
text = ' '.join(filtered_df[filtered_df['tpb_label'] == label]['text']).replace('QUOTE','').replace('quote','').replace('sijil halal','').replace('halal','')
|
252 |
+
wordclouds[label] = generate_wordcloud(text)
|
253 |
+
bigrams_data[label] = generate_bigrams(text)
|
254 |
+
|
255 |
+
# Extract only the words
|
256 |
+
words_only = {
|
257 |
+
key: [word_pair for word_pair, _ in value]
|
258 |
+
for key, value in bigrams_data.items()
|
259 |
+
}
|
260 |
+
# Create a single DataFrame for bigrams, with only the bigram text (no frequency)
|
261 |
+
bigram_df = pd.DataFrame({
|
262 |
+
label: data for label, data in words_only.items()
|
263 |
+
})
|
264 |
+
|
265 |
+
print(bigrams_data.items())
|
266 |
+
bigram_df.index = [f"Top {i+1}" for i in range(len(bigram_df))]
|
267 |
+
|
268 |
+
return (sentiment_fig, tpb_fig, tpb_sentiment_fig, filtered_df[filtered_df['text'].str.len() < 300].head(5),
|
269 |
+
report, wordclouds.get('attitude'), wordclouds.get('religious knowledge'),
|
270 |
+
wordclouds.get('subjective norms'), wordclouds.get('perceived behavioural control'),bigram_df)
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
def text_classification_and_sentiment(text, keywords_df):
|
275 |
+
result_tpb = pipeline_tpb(text)
|
276 |
+
tpb_label = result_tpb[0]['label']
|
277 |
+
tpb_score = result_tpb[0]['score']
|
278 |
+
|
279 |
+
result_sentiment = sentiment_pipeline(text)
|
280 |
+
sentiment_label = result_sentiment[0]['label']
|
281 |
+
sentiment_score = result_sentiment[0]['score']
|
282 |
+
|
283 |
+
keywords_df = pd.read_excel('IMG_8137.xlsx')
|
284 |
+
|
285 |
+
# Check for keywords in the first column of the DataFrame
|
286 |
+
keywords = keywords_df.iloc[:, 0].tolist()
|
287 |
+
for keyword in keywords:
|
288 |
+
if keyword.lower() in text.lower():
|
289 |
+
sentiment_label = 'negative'
|
290 |
+
sentiment_score = 1.0
|
291 |
+
|
292 |
+
decision = predict_decision(sentiment_label)
|
293 |
+
|
294 |
+
tpb_output = f"TPB Label: {tpb_label}"
|
295 |
+
sentiment_output = f"Sentiment: {sentiment_label}\nProbability: {sentiment_score * 100:.2f}%"
|
296 |
+
decision_output = f"Decision: {decision}"
|
297 |
+
|
298 |
+
return tpb_output, sentiment_output, decision_output
|
299 |
+
|
300 |
+
|
301 |
+
examples = [
|
302 |
+
"Alhamdulillah, hari ni dapat makan dekat restoran halal baru. Rasa puas hati dan tenang bila tau makanan yang kita makan dijamin halal.",
|
303 |
+
"Semua orang cakap kena check logo halal sebelum beli makanan. Dah jadi macam second nature dah sekarang. Korang pun sama kan?"
|
304 |
+
]
|
305 |
+
|
306 |
+
css = """
|
307 |
+
:root {
|
308 |
+
--bg: #FFFFFF; /* Set the background color to white */
|
309 |
+
--col: #191919; /* Define primary text color */
|
310 |
+
--bg-dark: #000000; /* Define dark background color if needed */
|
311 |
+
--col-dark: #ECF2F7; /* Define dark text color if needed */
|
312 |
+
----body-background-fill: #FFFFFF;
|
313 |
+
}
|
314 |
+
|
315 |
+
html, body {
|
316 |
+
background-color: var(--bg); /* Set the background color to white for the entire page */
|
317 |
+
margin: 0; /* Remove default body margin */
|
318 |
+
padding: 0; /* Remove default body padding */
|
319 |
+
}
|
320 |
+
|
321 |
+
.container {
|
322 |
+
max-width: 1000px;
|
323 |
+
margin: auto;
|
324 |
+
padding: 20px;
|
325 |
+
}
|
326 |
+
|
327 |
+
.title {
|
328 |
+
text-align: center;
|
329 |
+
margin-bottom: 20px;
|
330 |
+
}
|
331 |
+
|
332 |
+
.nav-buttons {
|
333 |
+
display: flex;
|
334 |
+
justify-content: center;
|
335 |
+
gap: 10px;
|
336 |
+
margin-bottom: 20px;
|
337 |
+
}
|
338 |
+
|
339 |
+
#recommendation_report {
|
340 |
+
background-color: #f9f9f9; /* Keep this background light for the report section */
|
341 |
+
padding: 20px;
|
342 |
+
border: 2px solid #e0e0e0;
|
343 |
+
border-radius: 10px;
|
344 |
+
margin-top: 20px;
|
345 |
+
font-family: Arial, sans-serif;
|
346 |
+
font-size: 14px;
|
347 |
+
}
|
348 |
+
|
349 |
+
.wrap-text {
|
350 |
+
white-space: normal !important;
|
351 |
+
word-wrap: break-word;
|
352 |
+
}
|
353 |
+
|
354 |
+
.footer {visibility: hidden}
|
355 |
+
|
356 |
+
"""
|
357 |
+
|
358 |
+
with gr.Blocks(css=css + """
|
359 |
+
body, .gradio-container, .root, .wrap, #root .background .container {
|
360 |
+
background-color: white !important;
|
361 |
+
background-image: none !important;
|
362 |
+
background-fill: white !important;
|
363 |
+
}
|
364 |
+
|
365 |
+
""", theme='aisyahhrazak/miku-aisyah@=1.2.2') as demo:
|
366 |
+
|
367 |
+
with gr.Tabs() as tabs:
|
368 |
+
with gr.TabItem("User View", id=0):
|
369 |
+
gr.Markdown("## Text Classification and Sentiment Analysis Based on User Input About Halal Food Acquisition")
|
370 |
+
gr.Markdown("Enter a text to see TPB classification, sentiment analysis, and purchase prediction results!")
|
371 |
+
input_text = gr.Textbox(lines=2, label="Input Comment", placeholder="Model can make mistakes, we are striving to improve the model.")
|
372 |
+
with gr.Row():
|
373 |
+
tpb_output = gr.Textbox(lines=3, label="TPB Classification")
|
374 |
+
sentiment_output = gr.Textbox(lines=3, label="Sentiment Analysis")
|
375 |
+
decision_output = gr.Textbox(lines=3, label="Purchase Prediction")
|
376 |
+
classify_button = gr.Button("Analyze")
|
377 |
+
classify_button.click(fn=text_classification_and_sentiment, inputs=input_text, outputs=[tpb_output, sentiment_output, decision_output])
|
378 |
+
gr.Examples(examples=examples, inputs=input_text)
|
379 |
+
|
380 |
+
with gr.TabItem("Company View", id=1):
|
381 |
+
gr.Markdown("# Sentiment Analysis and Purchase Decision Factor for Halal Food Acquisition")
|
382 |
+
|
383 |
+
input_text = gr.Textbox(lines=1, label="Search Keyword", placeholder="Enter keyword")
|
384 |
+
search_button = gr.Button("Search")
|
385 |
+
|
386 |
+
with gr.Row():
|
387 |
+
sentiment_chart = gr.Plot(label="Sentiment Distribution")
|
388 |
+
tpb_chart = gr.Plot(label="TPB Factor Distribution")
|
389 |
+
|
390 |
+
tpb_sentiment_chart = gr.Plot(label="Sentiment Distribution within TPB Factors")
|
391 |
+
# Update word cloud outputs to be in a single row
|
392 |
+
gr.Markdown("### Word Clouds by TPB Label")
|
393 |
+
|
394 |
+
with gr.Row():
|
395 |
+
attitude_wc = gr.Image(label="Attitude Word Cloud", height=200, width=300)
|
396 |
+
religious_knowledge_wc = gr.Image(label="Religious Knowledge Word Cloud", height=200, width=300)
|
397 |
+
subjective_norms_wc = gr.Image(label="Subjective Norms Word Cloud",height=200, width=300)
|
398 |
+
perceived_behavioural_control_wc = gr.Image(label="Perceived Behavioural Control Word Cloud", height=200, width=300)
|
399 |
+
|
400 |
+
with gr.Accordion("See Recommendation Details"):
|
401 |
+
report_output = gr.Markdown(label="Recommendation Report", elem_id="recommendation_report")
|
402 |
+
|
403 |
+
gr.Markdown("### Top Bigrams by TPB Label")
|
404 |
+
bigram_table = gr.Dataframe(label="Top Bigrams for Each TPB Label")
|
405 |
+
|
406 |
+
output_table = gr.Dataframe(
|
407 |
+
headers=["text", "tpb_label", "sentiment", "score"],
|
408 |
+
label="Company Analysis Results",
|
409 |
+
wrap=True
|
410 |
+
)
|
411 |
+
|
412 |
+
search_button.click(
|
413 |
+
fn=search_company,
|
414 |
+
inputs=input_text,
|
415 |
+
outputs=[
|
416 |
+
sentiment_chart, tpb_chart, tpb_sentiment_chart, output_table, report_output,
|
417 |
+
attitude_wc, religious_knowledge_wc, subjective_norms_wc, perceived_behavioural_control_wc,bigram_table
|
418 |
+
]
|
419 |
+
)
|
420 |
+
|
421 |
+
demo.launch()
|
attn_mask_utils.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
4 |
+
|
5 |
+
|
6 |
+
def _prepare_4d_causal_attention_mask(
|
7 |
+
attention_mask: Optional[torch.Tensor],
|
8 |
+
input_shape: Union[torch.Size, Tuple, List],
|
9 |
+
inputs_embeds: torch.Tensor,
|
10 |
+
past_key_values_length: int,
|
11 |
+
sliding_window: Optional[int] = None,
|
12 |
+
):
|
13 |
+
"""
|
14 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
15 |
+
`(batch_size, key_value_length)`
|
16 |
+
|
17 |
+
Args:
|
18 |
+
attention_mask (`torch.Tensor` or `None`):
|
19 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
20 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
21 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
22 |
+
inputs_embeds (`torch.Tensor`):
|
23 |
+
The embedded inputs as a torch Tensor.
|
24 |
+
past_key_values_length (`int`):
|
25 |
+
The length of the key value cache.
|
26 |
+
sliding_window (`int`, *optional*):
|
27 |
+
If the model uses windowed attention, a sliding window should be passed.
|
28 |
+
"""
|
29 |
+
attn_mask_converter = AttentionMaskConverter(
|
30 |
+
is_causal=False, sliding_window=sliding_window
|
31 |
+
) # is_causal=True in original implementation
|
32 |
+
|
33 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
34 |
+
|
35 |
+
# 4d mask is passed through the layers
|
36 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
37 |
+
attention_mask = attn_mask_converter.to_4d(
|
38 |
+
attention_mask,
|
39 |
+
input_shape[-1],
|
40 |
+
key_value_length=key_value_length,
|
41 |
+
dtype=inputs_embeds.dtype,
|
42 |
+
)
|
43 |
+
elif attention_mask is not None and len(attention_mask.shape) == 4:
|
44 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
45 |
+
if tuple(attention_mask.shape) != expected_shape:
|
46 |
+
raise ValueError(
|
47 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
51 |
+
inverted_mask = 1.0 - attention_mask
|
52 |
+
attention_mask = inverted_mask.masked_fill(
|
53 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
57 |
+
input_shape[0],
|
58 |
+
input_shape[-1],
|
59 |
+
key_value_length,
|
60 |
+
dtype=inputs_embeds.dtype,
|
61 |
+
device=inputs_embeds.device,
|
62 |
+
)
|
63 |
+
|
64 |
+
return attention_mask
|
65 |
+
|
66 |
+
|
67 |
+
# Adapted from _prepare_4d_causal_attention_mask
|
68 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
69 |
+
attention_mask: Optional[torch.Tensor],
|
70 |
+
input_shape: Union[torch.Size, Tuple, List],
|
71 |
+
inputs_embeds: torch.Tensor,
|
72 |
+
past_key_values_length: int,
|
73 |
+
sliding_window: Optional[int] = None,
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
77 |
+
|
78 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
79 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
80 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
81 |
+
"""
|
82 |
+
attn_mask_converter = AttentionMaskConverter(
|
83 |
+
is_causal=False, sliding_window=sliding_window
|
84 |
+
) # is_causal=True in original implementation
|
85 |
+
|
86 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
87 |
+
batch_size, query_length = input_shape
|
88 |
+
|
89 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
90 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
91 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
92 |
+
is_tracing = (
|
93 |
+
torch.jit.is_tracing()
|
94 |
+
or isinstance(inputs_embeds, torch.fx.Proxy)
|
95 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
96 |
+
)
|
97 |
+
|
98 |
+
if attention_mask is not None:
|
99 |
+
# 4d mask is passed through
|
100 |
+
if len(attention_mask.shape) == 4:
|
101 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
102 |
+
if tuple(attention_mask.shape) != expected_shape:
|
103 |
+
raise ValueError(
|
104 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
108 |
+
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype)
|
109 |
+
attention_mask = inverted_mask.masked_fill(
|
110 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
111 |
+
)
|
112 |
+
return attention_mask
|
113 |
+
|
114 |
+
elif not is_tracing and torch.all(attention_mask == 1):
|
115 |
+
if query_length == 1:
|
116 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
117 |
+
attention_mask = None
|
118 |
+
elif key_value_length == query_length:
|
119 |
+
attention_mask = None
|
120 |
+
else:
|
121 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
122 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
123 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
124 |
+
pass
|
125 |
+
elif query_length > 1 and key_value_length != query_length:
|
126 |
+
# See the comment above (https://github.com/pytorch/pytorch/issues/108108).
|
127 |
+
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
|
128 |
+
attention_mask = True
|
129 |
+
elif is_tracing:
|
130 |
+
raise ValueError(
|
131 |
+
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
|
132 |
+
)
|
133 |
+
|
134 |
+
if attention_mask is None:
|
135 |
+
expanded_4d_mask = None
|
136 |
+
elif attention_mask is True:
|
137 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
138 |
+
input_shape[0],
|
139 |
+
input_shape[-1],
|
140 |
+
key_value_length,
|
141 |
+
dtype=inputs_embeds.dtype,
|
142 |
+
device=inputs_embeds.device,
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
146 |
+
attention_mask,
|
147 |
+
input_shape[-1],
|
148 |
+
dtype=inputs_embeds.dtype,
|
149 |
+
key_value_length=key_value_length,
|
150 |
+
)
|
151 |
+
|
152 |
+
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
|
153 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
154 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
155 |
+
if not is_tracing and expanded_4d_mask.device.type == "cuda":
|
156 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
157 |
+
expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min
|
158 |
+
)
|
159 |
+
|
160 |
+
return expanded_4d_mask
|
bidirectional_mistral.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from transformers import (
|
5 |
+
MistralModel,
|
6 |
+
MistralPreTrainedModel,
|
7 |
+
MistralForCausalLM,
|
8 |
+
MistralConfig,
|
9 |
+
)
|
10 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
11 |
+
from transformers.cache_utils import Cache, DynamicCache
|
12 |
+
from transformers.models.mistral.modeling_mistral import (
|
13 |
+
MistralDecoderLayer,
|
14 |
+
MistralRMSNorm,
|
15 |
+
MistralAttention,
|
16 |
+
MistralFlashAttention2,
|
17 |
+
MistralSdpaAttention,
|
18 |
+
MistralMLP,
|
19 |
+
)
|
20 |
+
from torch import nn
|
21 |
+
from transformers.utils import logging
|
22 |
+
from attn_mask_utils import (
|
23 |
+
_prepare_4d_causal_attention_mask,
|
24 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
25 |
+
)
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class ModifiedMistralAttention(MistralAttention):
|
31 |
+
def __init__(self, *args, **kwargs):
|
32 |
+
super().__init__(*args, **kwargs)
|
33 |
+
self.is_causal = False
|
34 |
+
|
35 |
+
|
36 |
+
class ModifiedMistralFlashAttention2(MistralFlashAttention2):
|
37 |
+
def __init__(self, *args, **kwargs):
|
38 |
+
super().__init__(*args, **kwargs)
|
39 |
+
self.is_causal = False
|
40 |
+
|
41 |
+
|
42 |
+
class ModifiedMistralSdpaAttention(MistralSdpaAttention):
|
43 |
+
def __init__(self, *args, **kwargs):
|
44 |
+
super().__init__(*args, **kwargs)
|
45 |
+
self.is_causal = False
|
46 |
+
|
47 |
+
|
48 |
+
MISTRAL_ATTENTION_CLASSES = {
|
49 |
+
"eager": ModifiedMistralAttention,
|
50 |
+
"flash_attention_2": ModifiedMistralFlashAttention2,
|
51 |
+
"sdpa": ModifiedMistralSdpaAttention,
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
class ModifiedMistralDecoderLayer(MistralDecoderLayer):
|
56 |
+
def __init__(self, config: MistralConfig, layer_idx: int):
|
57 |
+
nn.Module.__init__(self)
|
58 |
+
self.hidden_size = config.hidden_size
|
59 |
+
|
60 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](
|
61 |
+
config, layer_idx
|
62 |
+
)
|
63 |
+
|
64 |
+
self.mlp = MistralMLP(config)
|
65 |
+
self.input_layernorm = MistralRMSNorm(
|
66 |
+
config.hidden_size, eps=config.rms_norm_eps
|
67 |
+
)
|
68 |
+
self.post_attention_layernorm = MistralRMSNorm(
|
69 |
+
config.hidden_size, eps=config.rms_norm_eps
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
class MistralBiModel(MistralModel):
|
74 |
+
def __init__(self, config: MistralConfig):
|
75 |
+
MistralPreTrainedModel.__init__(self, config)
|
76 |
+
self.padding_idx = config.pad_token_id
|
77 |
+
self.vocab_size = config.vocab_size
|
78 |
+
|
79 |
+
self.embed_tokens = nn.Embedding(
|
80 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
81 |
+
)
|
82 |
+
self.layers = nn.ModuleList(
|
83 |
+
[
|
84 |
+
ModifiedMistralDecoderLayer(config, layer_idx)
|
85 |
+
for layer_idx in range(config.num_hidden_layers)
|
86 |
+
]
|
87 |
+
)
|
88 |
+
self._attn_implementation = config._attn_implementation
|
89 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
90 |
+
|
91 |
+
self.gradient_checkpointing = False
|
92 |
+
# Initialize weights and apply final processing
|
93 |
+
self.post_init()
|
94 |
+
|
95 |
+
# Copied from forward() in transformers.models.mistral.modeling_mistral.MistralModel
|
96 |
+
def forward(
|
97 |
+
self,
|
98 |
+
input_ids: torch.LongTensor = None,
|
99 |
+
attention_mask: Optional[torch.Tensor] = None,
|
100 |
+
position_ids: Optional[torch.LongTensor] = None,
|
101 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
102 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
103 |
+
use_cache: Optional[bool] = None,
|
104 |
+
output_attentions: Optional[bool] = None,
|
105 |
+
output_hidden_states: Optional[bool] = None,
|
106 |
+
return_dict: Optional[bool] = None,
|
107 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
108 |
+
output_attentions = (
|
109 |
+
output_attentions
|
110 |
+
if output_attentions is not None
|
111 |
+
else self.config.output_attentions
|
112 |
+
)
|
113 |
+
output_hidden_states = (
|
114 |
+
output_hidden_states
|
115 |
+
if output_hidden_states is not None
|
116 |
+
else self.config.output_hidden_states
|
117 |
+
)
|
118 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
119 |
+
|
120 |
+
return_dict = (
|
121 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
122 |
+
)
|
123 |
+
|
124 |
+
# retrieve input_ids and inputs_embeds
|
125 |
+
if input_ids is not None and inputs_embeds is not None:
|
126 |
+
raise ValueError(
|
127 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
128 |
+
)
|
129 |
+
elif input_ids is not None:
|
130 |
+
batch_size, seq_length = input_ids.shape
|
131 |
+
elif inputs_embeds is not None:
|
132 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
133 |
+
else:
|
134 |
+
raise ValueError(
|
135 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
136 |
+
)
|
137 |
+
|
138 |
+
if self.gradient_checkpointing and self.training:
|
139 |
+
if use_cache:
|
140 |
+
logger.warning_once(
|
141 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
142 |
+
)
|
143 |
+
use_cache = False
|
144 |
+
|
145 |
+
past_key_values_length = 0
|
146 |
+
|
147 |
+
if use_cache:
|
148 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
149 |
+
if use_legacy_cache:
|
150 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
151 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
152 |
+
|
153 |
+
if position_ids is None:
|
154 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
155 |
+
position_ids = torch.arange(
|
156 |
+
past_key_values_length,
|
157 |
+
seq_length + past_key_values_length,
|
158 |
+
dtype=torch.long,
|
159 |
+
device=device,
|
160 |
+
)
|
161 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
162 |
+
else:
|
163 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
164 |
+
|
165 |
+
if inputs_embeds is None:
|
166 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
167 |
+
|
168 |
+
if (
|
169 |
+
attention_mask is not None
|
170 |
+
and self._attn_implementation == "flash_attention_2"
|
171 |
+
and use_cache
|
172 |
+
):
|
173 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
174 |
+
if is_padding_right:
|
175 |
+
raise ValueError(
|
176 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
177 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
178 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
179 |
+
)
|
180 |
+
|
181 |
+
if self._attn_implementation == "flash_attention_2":
|
182 |
+
# 2d mask is passed through the layers
|
183 |
+
attention_mask = (
|
184 |
+
attention_mask
|
185 |
+
if (attention_mask is not None and 0 in attention_mask)
|
186 |
+
else None
|
187 |
+
)
|
188 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
189 |
+
# The original implementation is by-passed, see attn_mask_utils.py
|
190 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
191 |
+
attention_mask,
|
192 |
+
(batch_size, seq_length),
|
193 |
+
inputs_embeds,
|
194 |
+
past_key_values_length,
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
# 4d mask is passed through the layers
|
198 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
199 |
+
attention_mask,
|
200 |
+
(batch_size, seq_length),
|
201 |
+
inputs_embeds,
|
202 |
+
past_key_values_length,
|
203 |
+
sliding_window=self.config.sliding_window,
|
204 |
+
)
|
205 |
+
|
206 |
+
hidden_states = inputs_embeds
|
207 |
+
|
208 |
+
# decoder layers
|
209 |
+
all_hidden_states = () if output_hidden_states else None
|
210 |
+
all_self_attns = () if output_attentions else None
|
211 |
+
next_decoder_cache = None
|
212 |
+
|
213 |
+
for decoder_layer in self.layers:
|
214 |
+
if output_hidden_states:
|
215 |
+
all_hidden_states += (hidden_states,)
|
216 |
+
|
217 |
+
if self.gradient_checkpointing and self.training:
|
218 |
+
layer_outputs = self._gradient_checkpointing_func(
|
219 |
+
decoder_layer.__call__,
|
220 |
+
hidden_states,
|
221 |
+
attention_mask,
|
222 |
+
position_ids,
|
223 |
+
past_key_values,
|
224 |
+
output_attentions,
|
225 |
+
use_cache,
|
226 |
+
)
|
227 |
+
else:
|
228 |
+
layer_outputs = decoder_layer(
|
229 |
+
hidden_states,
|
230 |
+
attention_mask=attention_mask,
|
231 |
+
position_ids=position_ids,
|
232 |
+
past_key_value=past_key_values,
|
233 |
+
output_attentions=output_attentions,
|
234 |
+
use_cache=use_cache,
|
235 |
+
)
|
236 |
+
|
237 |
+
hidden_states = layer_outputs[0]
|
238 |
+
|
239 |
+
if use_cache:
|
240 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
241 |
+
|
242 |
+
if output_attentions:
|
243 |
+
all_self_attns += (layer_outputs[1],)
|
244 |
+
|
245 |
+
hidden_states = self.norm(hidden_states)
|
246 |
+
|
247 |
+
# add hidden states from the last decoder layer
|
248 |
+
if output_hidden_states:
|
249 |
+
all_hidden_states += (hidden_states,)
|
250 |
+
|
251 |
+
next_cache = None
|
252 |
+
if use_cache:
|
253 |
+
next_cache = (
|
254 |
+
next_decoder_cache.to_legacy_cache()
|
255 |
+
if use_legacy_cache
|
256 |
+
else next_decoder_cache
|
257 |
+
)
|
258 |
+
|
259 |
+
if not return_dict:
|
260 |
+
return tuple(
|
261 |
+
v
|
262 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
263 |
+
if v is not None
|
264 |
+
)
|
265 |
+
return BaseModelOutputWithPast(
|
266 |
+
last_hidden_state=hidden_states,
|
267 |
+
past_key_values=next_cache,
|
268 |
+
hidden_states=all_hidden_states,
|
269 |
+
attentions=all_self_attns,
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
class MistralBiForMNTP(MistralForCausalLM):
|
274 |
+
def __init__(self, config):
|
275 |
+
MistralPreTrainedModel.__init__(self, config)
|
276 |
+
self.model = MistralBiModel(config)
|
277 |
+
self.vocab_size = config.vocab_size
|
278 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
279 |
+
|
280 |
+
# Initialize weights and apply final processing
|
281 |
+
self.post_init()
|
classifier.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bidirectional_mistral import MistralBiModel
|
2 |
+
from transformers import MistralPreTrainedModel
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from typing import Optional, List
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
8 |
+
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
9 |
+
|
10 |
+
|
11 |
+
class MistralForSequenceClassification(MistralPreTrainedModel):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
self.num_labels = config.num_labels
|
15 |
+
self.model = MistralBiModel(config)
|
16 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
17 |
+
|
18 |
+
# Initialize weights and apply final processing
|
19 |
+
self.post_init()
|
20 |
+
|
21 |
+
def forward(
|
22 |
+
self,
|
23 |
+
input_ids: torch.LongTensor = None,
|
24 |
+
attention_mask: Optional[torch.Tensor] = None,
|
25 |
+
position_ids: Optional[torch.LongTensor] = None,
|
26 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
27 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
28 |
+
labels: Optional[torch.LongTensor] = None,
|
29 |
+
use_cache: Optional[bool] = None,
|
30 |
+
output_attentions: Optional[bool] = None,
|
31 |
+
output_hidden_states: Optional[bool] = None,
|
32 |
+
return_dict: Optional[bool] = None,
|
33 |
+
token_type_ids: Optional[bool] = None
|
34 |
+
):
|
35 |
+
r"""
|
36 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
37 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
38 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
39 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
40 |
+
"""
|
41 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
42 |
+
|
43 |
+
transformer_outputs = self.model(
|
44 |
+
input_ids,
|
45 |
+
attention_mask=attention_mask,
|
46 |
+
position_ids=position_ids,
|
47 |
+
past_key_values=past_key_values,
|
48 |
+
inputs_embeds=inputs_embeds,
|
49 |
+
use_cache=use_cache,
|
50 |
+
output_attentions=output_attentions,
|
51 |
+
output_hidden_states=output_hidden_states,
|
52 |
+
return_dict=return_dict,
|
53 |
+
)
|
54 |
+
|
55 |
+
pooled_output = transformer_outputs[0][:, 0]
|
56 |
+
logits = self.score(pooled_output)
|
57 |
+
|
58 |
+
loss = None
|
59 |
+
if labels is not None:
|
60 |
+
if self.config.problem_type is None:
|
61 |
+
if self.num_labels == 1:
|
62 |
+
self.config.problem_type = "regression"
|
63 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
64 |
+
self.config.problem_type = "single_label_classification"
|
65 |
+
else:
|
66 |
+
self.config.problem_type = "multi_label_classification"
|
67 |
+
|
68 |
+
if self.config.problem_type == "regression":
|
69 |
+
loss_fct = MSELoss()
|
70 |
+
if self.num_labels == 1:
|
71 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
72 |
+
else:
|
73 |
+
loss = loss_fct(logits, labels)
|
74 |
+
elif self.config.problem_type == "single_label_classification":
|
75 |
+
loss_fct = CrossEntropyLoss()
|
76 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
77 |
+
elif self.config.problem_type == "multi_label_classification":
|
78 |
+
loss_fct = BCEWithLogitsLoss()
|
79 |
+
loss = loss_fct(logits, labels)
|
80 |
+
if not return_dict:
|
81 |
+
output = (logits,) + transformer_outputs[2:]
|
82 |
+
return ((loss,) + output) if loss is not None else output
|
83 |
+
|
84 |
+
return SequenceClassifierOutputWithPast(
|
85 |
+
loss=loss,
|
86 |
+
logits=logits,
|
87 |
+
past_key_values=transformer_outputs.past_key_values,
|
88 |
+
hidden_states=transformer_outputs.hidden_states,
|
89 |
+
attentions=transformer_outputs.attentions,
|
90 |
+
)
|
en.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["a","a's","able","about","above","according","accordingly","across","actually","after","afterwards","again","against","ain't","all","allow","allows","almost","alone","along","already","also","although","always","am","among","amongst","an","and","another","any","anybody","anyhow","anyone","anything","anyway","anyways","anywhere","apart","appear","appreciate","appropriate","are","aren't","around","as","aside","ask","asking","associated","at","available","away","awfully","b","be","became","because","become","becomes","becoming","been","before","beforehand","behind","being","believe","below","beside","besides","best","better","between","beyond","both","brief","but","by","c","c'mon","c's","came","can","can't","cannot","cant","cause","causes","certain","certainly","changes","clearly","co","com","come","comes","concerning","consequently","consider","considering","contain","containing","contains","corresponding","could","couldn't","course","currently","d","definitely","described","despite","did","didn't","different","do","does","doesn't","doing","don't","done","down","downwards","during","e","each","edu","eg","eight","either","else","elsewhere","enough","entirely","especially","et","etc","even","ever","every","everybody","everyone","everything","everywhere","ex","exactly","example","except","f","far","few","fifth","first","five","followed","following","follows","for","former","formerly","forth","four","from","further","furthermore","g","get","gets","getting","given","gives","go","goes","going","gone","got","gotten","greetings","h","had","hadn't","happens","hardly","has","hasn't","have","haven't","having","he","he's","hello","help","hence","her","here","here's","hereafter","hereby","herein","hereupon","hers","herself","hi","him","himself","his","hither","hopefully","how","howbeit","however","i","i'd","i'll","i'm","i've","ie","if","ignored","immediate","in","inasmuch","inc","indeed","indicate","indicated","indicates","inner","insofar","instead","into","inward","is","isn't","it","it'd","it'll","it's","its","itself","j","just","k","keep","keeps","kept","know","known","knows","l","last","lately","later","latter","latterly","least","less","lest","let","let's","like","liked","likely","little","look","looking","looks","ltd","m","mainly","many","may","maybe","me","mean","meanwhile","merely","might","more","moreover","most","mostly","much","must","my","myself","n","name","namely","nd","near","nearly","necessary","need","needs","neither","never","nevertheless","new","next","nine","no","nobody","non","none","noone","nor","normally","not","nothing","novel","now","nowhere","o","obviously","of","off","often","oh","ok","okay","old","on","once","one","ones","only","onto","or","other","others","otherwise","ought","our","ours","ourselves","out","outside","over","overall","own","p","particular","particularly","per","perhaps","placed","please","plus","possible","presumably","probably","provides","q","que","quite","qv","r","rather","rd","re","really","reasonably","regarding","regardless","regards","relatively","respectively","right","s","said","same","saw","say","saying","says","second","secondly","see","seeing","seem","seemed","seeming","seems","seen","self","selves","sensible","sent","serious","seriously","seven","several","shall","she","should","shouldn't","since","six","so","some","somebody","somehow","someone","something","sometime","sometimes","somewhat","somewhere","soon","sorry","specified","specify","specifying","still","sub","such","sup","sure","t","t's","take","taken","tell","tends","th","than","thank","thanks","thanx","that","that's","thats","the","their","theirs","them","themselves","then","thence","there","there's","thereafter","thereby","therefore","therein","theres","thereupon","these","they","they'd","they'll","they're","they've","think","third","this","thorough","thoroughly","those","though","three","through","throughout","thru","thus","to","together","too","took","toward","towards","tried","tries","truly","try","trying","twice","two","u","un","under","unfortunately","unless","unlikely","until","unto","up","upon","us","use","used","useful","uses","using","usually","uucp","v","value","various","very","via","viz","vs","w","want","wants","was","wasn't","way","we","we'd","we'll","we're","we've","welcome","well","went","were","weren't","what","what's","whatever","when","whence","whenever","where","where's","whereafter","whereas","whereby","wherein","whereupon","wherever","whether","which","while","whither","who","who's","whoever","whole","whom","whose","why","will","willing","wish","with","within","without","won't","wonder","would","wouldn't","x","y","yes","yet","you","you'd","you'll","you're","you've","your","yours","yourself","yourselves","z","zero"]
|
sentiment-tpb-dataset.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|