hafizh zaki prasetyo adi commited on
Commit
c402a4a
·
verified ·
1 Parent(s): b079551

initial commit

Browse files
Files changed (2) hide show
  1. requirements.txt +3 -0
  2. streamlit_app.py +54 -0
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ liqfit==1.0.0
2
+ transformers==4.37.2
3
+ SentencePiece
streamlit_app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from liqfit.pipeline import ZeroShotClassificationPipeline
2
+ from liqfit.models import T5ForZeroShotClassification
3
+ from transformers import T5Tokenizer
4
+ import streamlit as st
5
+ import time
6
+
7
+ model = T5ForZeroShotClassification.from_pretrained('knowledgator/comprehend_it-multilingual-t5-base')
8
+ tokenizer = T5Tokenizer.from_pretrained('knowledgator/comprehend_it-multilingual-t5-base')
9
+ classifier = ZeroShotClassificationPipeline(model=model, tokenizer=tokenizer,ypothesis_template = '{}', encoder_decoder = True)
10
+ st.title('Natural Language Project')
11
+ st.markdown('Hafizh Zaki Prasetyo Adi|[email protected]|https://www.linkedin.com/in/hafizhzpa/')
12
+ part=st.sidebar.radio("project",["sentimen", "emosi", "label khusus"],captions = ["menentukan label sentimen", "menentukan label emosi", "klasifikasi berdasarkan label yang ditentukan"])
13
+ text = st.text_input('text', 'Saya sudah menggunakan produk ini selama sebulan dan saya sangat puas dengan hasilnya')
14
+ multiclass = st.checkbox('Izinkan multi label')
15
+ if part=='label khusus':
16
+ start=time.time()
17
+ label = st.text_input('label', 'positive,negative,neutral')
18
+ if st.button('run'):
19
+ candidate_labels = label.split(',')
20
+ result=classifier(text, candidate_labels, multi_label=multiclass)
21
+ if not multiclass:
22
+ st.text(f"label:{result['labels'][0]}")
23
+ st.text(f"skor:{result['scores'][0]}")
24
+ else:
25
+ bool_score=[score>0.5 for score in result['scores']]
26
+ st.text(f"label:{','.join([label for i,label in enumerate(result['labels']) if bool_score[i]])}")
27
+ st.text(f"skor:{','.join([skor for i,skor in enumerate(result['scores']) if bool_score[i]])}")
28
+ st.text(f"waktu:{time.time()-start}")
29
+ if part=='sentimen':
30
+ start=time.time()
31
+ if st.button('run'):
32
+ candidate_labels = ["positive','negative','neutral"]
33
+ result=classifier(text, candidate_labels, multi_label=multiclass)
34
+ if not multiclass:
35
+ st.text(f"label:{result['labels'][0]}")
36
+ st.text(f"skor:{result['scores'][0]}")
37
+ else:
38
+ bool_score=[score>0.5 for score in result['scores']]
39
+ st.text(f"label:{','.join([label for i,label in enumerate(result['labels']) if bool_score[i]])}")
40
+ st.text(f"skor:{','.join([skor for i,skor in enumerate(result['scores']) if bool_score[i]])}")
41
+ st.text(f"waktu:{time.time()-start}")
42
+ if part=='emotion':
43
+ start=time.time()
44
+ if st.button('run'):
45
+ candidate_labels = ["bahagia", "sedih", "takut", "marah", "antisipasi", "terkejut", "jijik","percaya"]
46
+ result=classifier(text, candidate_labels, multi_label=multiclass)
47
+ if not multiclass:
48
+ st.text(f"label:{result['labels'][0]}")
49
+ st.text(f"skor:{result['scores'][0]}")
50
+ else:
51
+ bool_score=[score>0.5 for score in result['scores']]
52
+ st.text(f"label:{','.join([label for i,label in enumerate(result['labels']) if bool_score[i]])}")
53
+ st.text(f"skor:{','.join([skor for i,skor in enumerate(result['scores']) if bool_score[i]])}")
54
+ st.text(f"waktu:{time.time()-start}")