Hack90 commited on
Commit
d9e840a
·
verified ·
1 Parent(s): 3ef0d7b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -11
app.py CHANGED
@@ -1005,7 +1005,7 @@ with ui.navset_card_tab(id="tab"):
1005
  selected=["compliment", "cross_entropy", "headless"]
1006
  )
1007
  ui.input_slider("x_filter", "x_filter", 0, 1, 0.01)
1008
- def plot_loss_rates_model(df, param_types, loss_types, model_types, x_filter):
1009
  # interplot each column to be same number of points
1010
  x = np.linspace(0, 1, 1000)
1011
  loss_rates = []
@@ -1026,16 +1026,14 @@ with ui.navset_card_tab(id="tab"):
1026
  # print(loss_rates)
1027
 
1028
  for i, loss_rate in enumerate(loss_rates):
1029
- df_madmad = pd.DataFrame({'x':x, 'loss':loss_rate})
1030
 
1031
- # df_madmad = df_madmad.sort_values(by='x')
1032
- df_madmad = df_madmad[df_madmad['x']>x_filter]
1033
- x = df_madmad['x'].to_list()
1034
- loss_rate = df_madmad['loss'].to_list()
1035
- try:
1036
- ax.plot(x, loss_rate, label=labels[i])
1037
- except:
1038
- return fig
1039
 
1040
  ax.legend()
1041
  ax.set_xlabel('Training steps')
@@ -1048,8 +1046,9 @@ with ui.navset_card_tab(id="tab"):
1048
  def plot_model_scaling():
1049
  fig = None
1050
  df = pd.read_csv('training_data_5.csv')
 
1051
  mpl.rcParams.update(mpl.rcParamsDefault)
1052
- fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type(),input.x_filter() )
1053
 
1054
  import tempfile
1055
  fd, path = tempfile.mkstemp(suffix = '.svg')
 
1005
  selected=["compliment", "cross_entropy", "headless"]
1006
  )
1007
  ui.input_slider("x_filter", "x_filter", 0, 1, 0.01)
1008
+ def plot_loss_rates_model(df, param_types, loss_types, model_types):
1009
  # interplot each column to be same number of points
1010
  x = np.linspace(0, 1, 1000)
1011
  loss_rates = []
 
1026
  # print(loss_rates)
1027
 
1028
  for i, loss_rate in enumerate(loss_rates):
1029
+ # df_madmad = pd.DataFrame({'x':x, 'loss':loss_rate})
1030
 
1031
+ # # df_madmad = df_madmad.sort_values(by='x')
1032
+ # df_madmad = df_madmad[df_madmad['x']>x_filter]
1033
+ # x = df_madmad['x'].to_list()
1034
+ # loss_rate = df_madmad['loss'].to_list(
1035
+ ax.plot(x, loss_rate, label=labels[i])
1036
+
 
 
1037
 
1038
  ax.legend()
1039
  ax.set_xlabel('Training steps')
 
1046
  def plot_model_scaling():
1047
  fig = None
1048
  df = pd.read_csv('training_data_5.csv')
1049
+ df = df[df['epoch_interp']>0.035]
1050
  mpl.rcParams.update(mpl.rcParamsDefault)
1051
+ fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type() )
1052
 
1053
  import tempfile
1054
  fd, path = tempfile.mkstemp(suffix = '.svg')